全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

直齿圆柱齿轮啮合耦合振动系统参数振动研究

DOI: 10.6052/j.issn.1000-4750.2013.11.1054, PP. 213-220

Keywords: 齿轮啮合,时变刚度,多尺度法,动力稳定性,稳态响应

Full-Text   Cite this paper   Add to My Lib

Abstract:

齿轮副啮合耦合振动系统是一个多自由度参数振动系统。该文考虑啮合刚度时变性,传动轴、轴承和箱体等支撑刚度和阻尼,轮齿传动误差以及输入转矩非线性等因素的影响,建立了直齿圆柱齿轮副啮合耦合动力学模型。将动力学方程转换到正则模态下,利用多尺度法对其进行动力稳定性分析,推导出主共振和亚谐共振条件下系统的组合共振频率以及稳定性边界。数值模拟系统非参数和参数共振响应,与摄动法结果吻合较好。结果表明:当轮齿啮合频率接近和型共振频率时,系统发生参数共振,存在着不收敛的无界解。系统的非参数共振响应为概周期响应,包含着多种组合频率成分。

References

[1]  李润方, 王建军. 齿轮系统动力学: 振动, 冲击, 噪声[M]. 北京: 科学出版社, 1997: 21―22. Li Runfang, Wang Jianjun. Gear system dynamics (vibration, impact, noise) [M]. Beijing: Science Press, 1997: 21―22. (in Chinese)
[2]  Benton M, Seireg A. Simulation of resonances and instability conditions in pinion-gear systems [J]. Journal of Mechanical Design, 1978, 100(1): 26―32.
[3]  Benton M, Seireg A. The application of the ritz averaging method to determining the response of systems with time varying stiffness to harmonic excitation [J]. Journal of Mechanical Design, 1980, 102(2): 384―390.
[4]  张锁怀, 李忆平. 用谐波平衡法分析齿轮耦合的转子-轴承系统的动力特性[J]. 机械工程学报, 2000, 36(7): 18―22. Zhang Suohuai, Li Yiping. Dynamic analysis of rotor and bearing coupling system based on harmonic method [J]. Chinese Journal of Mechanical Engineering, 2000, 36(7): 18―22. (in Chinese)
[5]  Lin J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation [J]. Journal of Sound and vibration, 2002, 249(1): 129―145.
[6]  安子军, 张鹏, 杨作梅. 摆线钢球行星传动系统参数振动特性研究[J]. 工程力学, 2012, 29(3): 244―251. An Zijun, Zhang Peng, Yang Zuomei. Research on properties for parametric vibration of cycloid ball planetary transmission system [J]. Engineering Mechanics, 2012, 29(3): 244―251. (in Chinese)
[7]  Harris S L. Dynamic loads on the teeth of spur gears [J]. Proceedings of the Institution of Mechanical Engineers, 1958, 172(1): 87―112.
[8]  王玉新, 柳杨, 王仪明. 考虑啮合时变刚度和传递误差的齿轮振动分析[J]. 机械传动, 2002, 26(1): 5―8. Wang Yuxin, Yang Liu, Wang Yiming. Considering meshing time-varying stiffness and transmission error of gear vibration analysis [J]. Mechanical Transmission, 2002, 26(1): 5―8. (in Chinese)
[9]  唐进元, 陈思雨, 钟掘. 一种改进的齿轮非线性动力学模型[J]. 工程力学, 2008, 25(1): 217―223. Tang Jinyuan, Chen Siyu, Zhong Jue. A improved nonlinear model for a spur gear pair system [J]. Engineering Mechanics, 2008, 1(25): 217―223. (in Chinese)
[10]  魏永祥, 陈建军, 马洪波. 随机参数齿轮系统的非线性动力响应分析[J]. 工程力学, 2012, 29(11): 319―324. Wei Yongxiang, Chen Jianjun, Ma Hongbo, Analysis of nonlinear dynamic response of gear-rotor with random parametrics [J]. Engineering Mechanics, 2012, 29(11): 319―324. (in Chinese)
[11]  Zhang Wei, Ding Qian. Torsion vibration and parametric instability analysis of a spur gear system with time-varying and square nonlinearities [J]. International Journal of Applied Mechanics, 2014, 6(01): 45―67.
[12]  Kim W, Lee J Y, Chung J. Dynamic analysis for a planetary gear with time-varying pressure angles and contact ratios [J]. Journal of Sound and Vibration, 2012, 331(4): 883―901.
[13]  Chen Y C, Kang C H, Choi S T. Dynamic analysis of a geared rotor-bearing system with time-varying gear mesh stiffness and pressure angle [J]. Applied Mechanics and Materials, 2013, 284: 461―467.
[14]  赵飞. 风力发电齿轮箱非线性耦合动态特性研究[D]. 大连: 大连理工大学, 2010. Zhao Fei. Research on nonlinear coupling dynamic characteristic of the gear box for wind turbine [D]. Dalian University of Technology, 2010. (in Chinese)
[15]  陆启韶, 彭临平, 杨卓琴. 常微分方程与动力系统[M]. 北京: 北京航空航天大学出版社, 2010: 29―57. Lu Qishao, Peng Linping, Yang Zhuoqin. Ordinary differential equation and dynamical systems [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010: 29―57. (in Chinese)
[16]  李万祥, 张永燕. 一类四自由度系统碰撞问题[J]. 工程力学, 2013, 30(9): 259―263. Li Wanxiang, Zhang Yongyan, Collision problem of a four-degree-of-freedom vibro-impact system [J]. Engineering Mechanics, 2013, 30(9): 259―263. (in Chinese)
[17]  Errichello R. Encyclopedia of tribology [M]. Springer US, 2013: 1474―1478.
[18]  Nayfeh A H. Introduction to perturbation techniques [M]. New York: Wiley. 2011: 285―286.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133