全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

流固耦合S-型自主游动柔性鱼运动特性分析

DOI: 10.6052/j.issn.1000-4750.2013.11.1099, PP. 13-18

Keywords: S-型柔性鱼,超弹性柔性结构,自主游动,流固耦合,浸入边界法

Full-Text   Cite this paper   Add to My Lib

Abstract:

以S-型游动鱼作为对象,采用不可压缩Neo-Hookean材料描述鱼游动过程中的柔性变形及其与流体相互作用产生推力的自主游动特性。基于浸入边界法(IBM)的有限单元(FEM)离散模型,模拟了考虑鱼体肌肉作用力效应的柔性鱼在不可压缩粘性流体中自主游动的动力学过程,分析了流固耦合柔性鱼的游动机制及柔性变形的水弹性动力学特性。研究发现:随着鱼尾部不断呈S-型往复摆动,鱼体运动速度也呈波动形状,且受流固耦合的水动力学特性控制,并与鱼体的刚度密切相关。游动过程中,在鱼头的部位首先有涡旋形成,随着鱼向前游动,这些涡旋附着在鱼体表面向后滑移,并在鱼尾末端脱落形成S-型状的尾流。S-型状尾流直接影响鱼游动的速度及稳定性。

References

[1]  Liao J, Beal D, Lauder G, et al. Fish exploiting vortices decrease muscle activity [J]. Science, 2003, 302(5650): 1566―1569.
[2]  Wu C J, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school [J]. Science in China (E), 2009, 52(3): 658―669.
[3]  张立翔, 郭亚昆, 王文全. 强耦合流激振动的建模及求解的预测多修正算法[J]. 工程力学, 2010, 27(5): 36―44.
[4]  Zhang Lixiang, Guo Yakun, Wang Wenquan. Modeling of strongly coupled flow-induced vibration and solving method on predicror multi-corrector algorithm [J]. Engineering Mechanics, 2010, 27(5): 36―44. (in Chinese)
[5]  Peskin C S. The immersed boundary method [J]. Acta Numer, 2002, 11(1): 479―517.
[6]  Griffith B E, Hornung R D, McQueen D M, et al. An adaptive formally second order accurate version of the immersed boundary method [J]. Journal of Computational Physics, 2007, 223(1): 10―49.
[7]  Borazjani I, Sotiropoulos F. On the role of form and kinematics on the hydro-dynamics of self-propelled body/caudal fin swimming [J]. Journal of Experimental Biology, 2010, 213(1): 89―107.
[8]  Kern S, Koumoutsakos P. Simulations of optimized anguilliform swimming [J]. Journal of Experimental Biology, 2006, 209(24): 4841―4857.
[9]  Bowtell G, Williams T L. Anguilliform body dynamics-modeling the interaction between muscle activation and body curvature [J]. Philosophical Transactions of the Royal Society of London Series B, 1991, 334(1271): 385―390.
[10]  Tytell E D, Hsu C Y, Williams T L, et al. Interactions between internal forces, body stiffness and fluid environment in a neuromechanical model of lamprey swimming [J]. Proceedings of the National Academy of Sciences, 2010, 107(46): 19832―19837.
[11]  Bhalla A P S, Bale R, Griffith B E, et al. A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies [J]. Journal of Computational Physics, 2013, 250(10): 446―476.
[12]  Lai M C, Peskin C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity [J]. Journal of Computational Physics, 2000, 160(2): 705―719.
[13]  Boffi D, Gastaldi L, Heltai L, et al. On the hyper-elastic formulation of the immersed boundary method [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25/26/27/28): 2210―2231.
[14]  郝栋伟, 王文全. 超弹性柔性结构与流体耦合运动的浸入边界法研究[J]. 工程力学, 2013, 30(11): 36―41.
[15]  Hao Dongwei, Wang Wenquan. Numerical investigation of interaction between a flexible hyper-elastic structure and fluid using immersed boundary method [J]. Engineering Mechanics, 2013, 30(11): 36―41. (in Chinese)
[16]  Pengtao Sun, Jinchao Xu, Lixiang Zhang. Full Eulerian finite element method of a phase field for fluid-structure interaction problem [J]. Computers & Fluids, 2014, 90(2): 1―8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133