全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

桥梁气动导数的格子Boltzmann大涡模拟仿真

DOI: 10.6052/j.issn.1000-4750.2013.11.1053, PP. 111-119

Keywords: 格子Boltzmann方法,桥梁结构,气动导数,大涡模拟,强迫振动法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为将格子Boltzmann方法(LatticeBoltzmannMethod,LBM)用于桥梁气动导数的识别,该文将壁面自适应局部(Wall-AdaptingLocalEddy,WALE)涡黏性模型引入到多松弛时间格式(MultipleRelaxationTime,MRT)的LBM中,构造了一种能够有效模拟桥梁结构高雷诺数绕流的LBM大涡模拟方法—MRT-LBM-WALE。采用MRT-LBM-WALE和动边界技术驱动主梁断面在流场中做正弦竖向或扭转振动,在虚拟风洞中实现了强迫振动法识别气动导数的LBM仿真。利用方柱非定常绕流问题验证MRT-LBM-WALE的可靠性后,对理想平板和GreatBelt东桥的气动导数进行了计算。研究证明MRT-LBM-WALE能够得到近壁面上真实的亚格子涡黏性,可以准确地预测湍流流动的发展。同时,研究表明气动导数的MRT-LBM-WALE仿真值与理论解或试验值吻合较好。

References

[1]  刘祖军, 葛耀君, 杨詠昕. 平板断面压力分布对颤振导数及振动形态的影响[J]. 工程力学, 2014, 31(3): 122―128. Liu Zujun, Ge Yaojun, Yang Yongxin. The effect of the pressure distribution characteristics of plate surface on the flutter derivatives and vibration form [J]. Engineering Mechanics, 2014, 31(3): 122―128. (in Chinese)
[2]  李永乐, 汪斌, 黄林, 廖海黎. 平板气动力的CFD模拟及参数研究[J]. 工程力学, 2009, 26(3): 207―211. Li Yongle, Wang Bin, Huang Lin, Liao Haili. CFD simulation and parameter study on aerodynamic force of flat plate [J]. Engineering Mechanics, 2009, 26(3): 207―211. (in Chinese)
[3]  刘慕广, 陈政清. 箱型吊杆的风致振动特性[J]. 工程力学, 2013, 30(3): 233―138. Liu Muguang, Chen Zhengqing. Wind-induced vibration characteristics of box suspender [J]. Engineering Mechanics, 2013, 30(3): 233―138. (in Chinese)
[4]  Patro S K, Selvam R P, Bosch H. Adaptive h-finite element modeling of wind ?ow around bridges [J]. Engineering Structures, 2013, 48: 569―577.
[5]  祝志文, 顾明, 陈政清. 桥梁断面颤振导数的CFD全带宽识别法[J]. 工程力学, 2007, 24(9): 80―87. Zhu Zhiwen, Gu Ming, Chen Zhengqing. Extraction of flutter derivatives of bridge deck among full bandwidth of reduced wind speeds [J]. Engineering Mechanics, 2007, 24(9): 80―87. (in Chinese)
[6]  Braun A L, Awruch A M. Finite element simulation of the wind action over bridge sectional models: Application to the Guamá River Bridge (Pará State, Brazil) [J]. Finite Elements in Analysis and Design, 2008, 44: 105―122.
[7]  Huang Lin, Liao Haili. Identification of flutter derivatives of bridge deck under multi-frequency vibration [J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1): 16―25.
[8]  Brusiani F, Miranda S D, Patruno L, et al. On the evaluation of bridge deck flutter derivatives using RANS turbulence models [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119: 39―47.
[9]  王文全, 闫妍, 张立翔, 张承磊. 一种基于压力泊松方程的流体结构紧耦合算法[J]. 工程力学, 2012, 29(3): 9―15. Wang Wenquan, Yan Yan, Zhang Lixiang, Zhang Chenglei. A monolithic fluid-structure interaction approach based on the pressure poisson equation [J]. Engineering Mechanics, 2012, 29(3): 9―15. (in Chinese)
[10]  张丽, 王光谦, 傅旭东, 孙其诚. 低浓度颗粒流Boltzmann方程的同伦分析方法解[J]. 科学通报, 2009, 54(11): 1518―1523. Zhang Li, Wang Guangqian, Fu Xudong, Sun Qicheng. A new solution to Boltzmann equation of dilute granular flow with homotopy analysis method [J]. Chinese Science Bulletin, 2009, 54(11): 1518―1523. (in Chinese)
[11]  Li Kai, Zhong Chengwen, Zhuo Congshan, Cao Jun. Non-body-fitted Cartesian-mesh simulation of highly turbulent flows using multi-relaxation-time lattice Boltzmann method [J].Computers and Mathematics with Applications, 2012, 63: 1481―1496.
[12]  Eitel-Amor G, Meinke M, Schröder W. A lattice- Boltzmann method with hierarchically refined meshes [J]. Computers & Fluids, 2013, 75: 127―139.
[13]  Yu Huidan, Luo Lishi, Girimaji S S. LES of turbulent square jet flow using an MRT lattice Boltzmann model [J]. Computers & Fluids, 2006, 35: 957―965.
[14]  Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183―200.
[15]  Yu D, Mei R, Luo L S, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation [J]. Progress in Aerospace Sciences, 2003, 39: 329―367.
[16]  Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives [J]. Journal of Engineering Mechanics, ASCE, 1971, 97(EM6): 1717―1737.
[17]  陈同庆. 格子Boltzmann方法及其对圆柱绕流问题的模拟[D]. 天津: 天津大学, 2007. Chen Tongqing. Lattice boltzmann simulation of the flow around a circular cylinder [D]. Tianjin: Tianjin University, 2007. (in Chinese)
[18]  Bearman P W, Obasaju E D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders [J]. Journal of Fluid Mechanics, 1982, 119: 297―321.
[19]  Sohankar A, Davidson L, Norberg C. Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models [J]. Journal of Fluids Engineering, 2000, 122: 39―47.
[20]  BaoYan, Zhou Dai, Huang Cheng, et al. Numerical prediction of aerodynamic characteristics of prismatic cylinder by finite element method with Spalart-Allmaras turbulence model [J]. Computers and Structures, 2011, 89: 325―338.
[21]  Theodorsen T. General theory of aerodynamic instability and mechanism of flutter [R]. NACA Report No. 496, 1935.
[22]  Reinhold T A, Brinch M, Damsgaard A. Wind tunnel tests for the Great Belt Link [C]// Proceedings of the 1st International Symposium on Aerodynamics of Large Bridges. Larsen A Ed. Copenhagen, Denmark, 1992: 255―267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133