全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

内压波动下的CO2管道轴向表面裂纹疲劳扩展研究

DOI: 10.6052/j.issn.1000-4750.2013.11.1043, PP. 84-93

Keywords: 超临界态CO2管道,内压波动,半椭圆轴向裂纹,虚拟裂纹闭合法,疲劳扩展路径

Full-Text   Cite this paper   Add to My Lib

Abstract:

超临界态CO2的管道运输是目前国际上控制大气中CO2等温室气体过度排放的碳捕捉与封存计划中的重要一环。因此,在内压波动作用下,研究CO2管道内表面裂纹的疲劳扩展路径问题具有重要意义,这是应用“破前漏”断裂准则判断压力管道安全性的关键。该文借助线弹性断裂力学的基本理论,基于ABAQUS平台建立了包含单一半椭圆型轴向内壁裂纹的三维有限元管段模型。该模型应用虚拟裂纹闭合法,可实现在管端轴力及弯矩、内压等载荷作用下的裂纹前沿断裂力学参数的提取。基于该断裂力学有限元模型,该文以两种薄壁CO2管道(厚径比:t/R=1/10和t/R=1/27.3)为研究对象,主要研究了在其各自特定工作内压作用下,不同初始裂纹深径比(α01)的半椭圆型轴向内壁裂纹由于内压波动引起的疲劳扩展问题。详细分析了初始裂纹深径比α0分别为1、2/3、1/2、1/4、1/6和1/8等六种内表面裂纹的疲劳扩展路径;绘出了各种裂纹体的阶段性扩展轮廓并比较了其各自的疲劳扩展寿命。同时,亦讨论了管道厚径比对裂纹扩展趋势的影响。数值分析结果表明,裂纹体的初始几何形状与裂纹的疲劳扩展路径密切相关。各类裂纹的疲劳扩展存在一条“渐近路径”,该“渐近路径”与管道厚径比有关。

References

[1]  苏静波, 范晓晨, 邵国建. 几何非线性扩展有限元法及其断裂力学应用[J]. 工程力学, 2013, 30(4): 42―46. Su Jingbo, Fan Xiaochen, Shao Guojian. Extended finite element method with nonlinear geometry and its application in fracture mechanics [J]. Engineering mechanics, 2013, 30(4): 42―46. (in Chinese)
[2]  杨石扣, 任旭华, 张继勋. 基于覆盖细化的数值流形法及其在裂纹扩展中的应用[J]. 工程力学, 2013, 30(11): 47―54. Yang Shikou, Ren Xuhua, Zhang Jixun. Cover based refinement in the numerical manifold method and its application in crack propagation [J]. Engineering Mechanics, 2013, 30(11): 47―54. (in chinese)
[3]  Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral [J]. Engineering Fracture Mechanics, 1977, 9(4): 931―938.
[4]  Xie D, Biggers Jr S B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation [J]. Engineering Fracture Mechanics, 2006, 73(6): 771―785.
[5]  Xie D, Biggers Jr S B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details [J]. Engineering Fracture Mechanics, 2006, 73(6): 786―801.
[6]  Carpinteri A, Brighenti R. Circumferential surface flaws in pipes under cyclic axial loading [J]. Engineering Fracture Mechanics, 1998, 60(4): 383―396.
[7]  Li C Q, Yang S T. Stress intensity factors for high aspect ratio semi-elliptical internal surface cracks in pipes [J]. International Journal of Pressure Vessels and Piping, 2012, 96/97: 13―23.
[8]  Irwin G R. Crack-extension force for a part-through crack in a plate [J]. Journal of Applied Mechanics, 1962, 29(4): 651―654.
[9]  解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京: 科学出版社, 2009: 30―32. Xie De, Qian Qin, Li Chang’an. A numerical calculation method in fracture mechanics and its engineering applications [M]. Beijing: Sciences Press, 2009: 30―32. (in Chinese)
[10]  Anderson T L. Development of stress intensity factor solutions for surface and embedded cracks in API 579 [R]. WRC Bulletin 471. New York: Welding Research Council, 2002.
[11]  Dao N H, Sellami H. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation [J]. Engineering Fracture Mechanics, 2012, 96: 626―640.
[12]  Boukharouba T, Pluvinage G. Prediction of semi-elliptical defect form, case of a pipe subjected to internal pressure [J]. Nuclear Engineering and Design, 1999, 188(2): 161―171.
[13]  Lin X B, Smith R A. Numerical analysis of fatigue growth of external surface cracks in pressured cylinders [J]. International Journal of Pressure Vessels and Piping, 1997, 71(3): 293―300.
[14]  Brighenti R. Axially-cracked pipes under pulsating internal pressure [J]. International Journal of Fatigue, 2000, 22(7): 559―567.
[15]  LaForce T. Reducing greenhouse gas emissions: Geological storage of CO2 [R]. Nature Precedings, London: Imperial College, 2008.
[16]  Sun L, Chen W. The improved China CCS decision support system: A case study for Beijing-Tianjin-Hebei Region of China [J]. Applied Energy, 2013, 112(C): 793―799.
[17]  Richard Mosey. 2030: The coming tumult-unlimited growth on a finite planet [M]. New York: Algora Publishing, 2009: 115―117.
[18]  Jung J Y, Huh Cheol, Kang S G, et al. CO2 transport strategy and its cost estimation for the offshore CCS in Korea [J]. Applied Energy, 2013, 111: 1054―1060.
[19]  Mohitpour M, Jenkins A, Nahas G. A Generalized overview of requirements for the design, construction, and operation of new pipelines for CO2 sequestration [J]. The Journal of Pipeline Engineering, 2008, 7(4): 237―251.
[20]  Mohitpour M, Seevam P, Botros K K, et al. Pipeline transportation of carbon dioxide containing impurities [M]. New York: ASME Press 3 Park Avenue, NY 10016, 2012: 52―56.
[21]  Statoilhydro. Carbon dioxide capture, transport and storage [R]. Website: http://www.statoil.com/en/News And Media/PressRoom/CeraWeek2009/Downloads/New %20 Energy.pdf, 2007.
[22]  BS 7910, Guide to methods for assessing the acceptability of flaws in metallic structures [S]. 2005.
[23]  API 579-1/ASME FFS-1 (API 579 Second Edition). Fitness-For-Service [S]. 2007.
[24]  Recommended Practice DNV-RP-J202. Operation of CO2 Pipelines [S]. 2010.
[25]  IPCC. Carbon Dioxide Capture and Storage [R]. New York: Special report prepared by Working Group III of the Intergovernmental Panel on Climate Change, 2005.
[26]  Xiang Y, Wang Z, Xu M, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2- H2O environments [J]. The Journal of Supercritical Fluids, 2013, 82: 1―12.
[27]  潘家华. 油气管道断裂力学分析[M]. 北京: 石油工业出版社, 1989: 1―5. Pan Jiahua. Fracture mechanics analysis for oil & gas pipelines [M]. Beijing: Petroleum Industry Press, 1989. (in Chinese)
[28]  武延民, 王元清, 石永久, 江见鲸. 低温对结构钢材断裂韧度JIC影响的试验研究[J]. 铁道科学与工程学报. 2005, 2(1): 10―13. Wu Yanmin, Wang Yuanqing, Shi Yongjiu, Jiang Jianjing. Experimental research for effects of low temperature on fracture toughness JIC of structural steels [J]. Journal of railway science and engineering, 2005, 2(1): 10―13. (in Chinese)
[29]  茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM算法[J]. 工程力学, 2012, 29(7): 12―16. Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems [J]. Engineering mechanics, 2012, 29(7): 12―16. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133