苏静波, 范晓晨, 邵国建. 几何非线性扩展有限元法及其断裂力学应用[J]. 工程力学, 2013, 30(4): 42―46. Su Jingbo, Fan Xiaochen, Shao Guojian. Extended finite element method with nonlinear geometry and its application in fracture mechanics [J]. Engineering mechanics, 2013, 30(4): 42―46. (in Chinese)
[2]
杨石扣, 任旭华, 张继勋. 基于覆盖细化的数值流形法及其在裂纹扩展中的应用[J]. 工程力学, 2013, 30(11): 47―54. Yang Shikou, Ren Xuhua, Zhang Jixun. Cover based refinement in the numerical manifold method and its application in crack propagation [J]. Engineering Mechanics, 2013, 30(11): 47―54. (in chinese)
[3]
Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral [J]. Engineering Fracture Mechanics, 1977, 9(4): 931―938.
[4]
Xie D, Biggers Jr S B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation [J]. Engineering Fracture Mechanics, 2006, 73(6): 771―785.
[5]
Xie D, Biggers Jr S B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details [J]. Engineering Fracture Mechanics, 2006, 73(6): 786―801.
[6]
Carpinteri A, Brighenti R. Circumferential surface flaws in pipes under cyclic axial loading [J]. Engineering Fracture Mechanics, 1998, 60(4): 383―396.
[7]
Li C Q, Yang S T. Stress intensity factors for high aspect ratio semi-elliptical internal surface cracks in pipes [J]. International Journal of Pressure Vessels and Piping, 2012, 96/97: 13―23.
[8]
Irwin G R. Crack-extension force for a part-through crack in a plate [J]. Journal of Applied Mechanics, 1962, 29(4): 651―654.
[9]
解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京: 科学出版社, 2009: 30―32. Xie De, Qian Qin, Li Chang’an. A numerical calculation method in fracture mechanics and its engineering applications [M]. Beijing: Sciences Press, 2009: 30―32. (in Chinese)
[10]
Anderson T L. Development of stress intensity factor solutions for surface and embedded cracks in API 579 [R]. WRC Bulletin 471. New York: Welding Research Council, 2002.
[11]
Dao N H, Sellami H. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation [J]. Engineering Fracture Mechanics, 2012, 96: 626―640.
[12]
Boukharouba T, Pluvinage G. Prediction of semi-elliptical defect form, case of a pipe subjected to internal pressure [J]. Nuclear Engineering and Design, 1999, 188(2): 161―171.
[13]
Lin X B, Smith R A. Numerical analysis of fatigue growth of external surface cracks in pressured cylinders [J]. International Journal of Pressure Vessels and Piping, 1997, 71(3): 293―300.
[14]
Brighenti R. Axially-cracked pipes under pulsating internal pressure [J]. International Journal of Fatigue, 2000, 22(7): 559―567.
[15]
LaForce T. Reducing greenhouse gas emissions: Geological storage of CO2 [R]. Nature Precedings, London: Imperial College, 2008.
[16]
Sun L, Chen W. The improved China CCS decision support system: A case study for Beijing-Tianjin-Hebei Region of China [J]. Applied Energy, 2013, 112(C): 793―799.
[17]
Richard Mosey. 2030: The coming tumult-unlimited growth on a finite planet [M]. New York: Algora Publishing, 2009: 115―117.
[18]
Jung J Y, Huh Cheol, Kang S G, et al. CO2 transport strategy and its cost estimation for the offshore CCS in Korea [J]. Applied Energy, 2013, 111: 1054―1060.
[19]
Mohitpour M, Jenkins A, Nahas G. A Generalized overview of requirements for the design, construction, and operation of new pipelines for CO2 sequestration [J]. The Journal of Pipeline Engineering, 2008, 7(4): 237―251.
[20]
Mohitpour M, Seevam P, Botros K K, et al. Pipeline transportation of carbon dioxide containing impurities [M]. New York: ASME Press 3 Park Avenue, NY 10016, 2012: 52―56.
[21]
Statoilhydro. Carbon dioxide capture, transport and storage [R]. Website: http://www.statoil.com/en/News And Media/PressRoom/CeraWeek2009/Downloads/New %20 Energy.pdf, 2007.
[22]
BS 7910, Guide to methods for assessing the acceptability of flaws in metallic structures [S]. 2005.
[23]
API 579-1/ASME FFS-1 (API 579 Second Edition). Fitness-For-Service [S]. 2007.
[24]
Recommended Practice DNV-RP-J202. Operation of CO2 Pipelines [S]. 2010.
[25]
IPCC. Carbon Dioxide Capture and Storage [R]. New York: Special report prepared by Working Group III of the Intergovernmental Panel on Climate Change, 2005.
[26]
Xiang Y, Wang Z, Xu M, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2- H2O environments [J]. The Journal of Supercritical Fluids, 2013, 82: 1―12.
[27]
潘家华. 油气管道断裂力学分析[M]. 北京: 石油工业出版社, 1989: 1―5. Pan Jiahua. Fracture mechanics analysis for oil & gas pipelines [M]. Beijing: Petroleum Industry Press, 1989. (in Chinese)
[28]
武延民, 王元清, 石永久, 江见鲸. 低温对结构钢材断裂韧度JIC影响的试验研究[J]. 铁道科学与工程学报. 2005, 2(1): 10―13. Wu Yanmin, Wang Yuanqing, Shi Yongjiu, Jiang Jianjing. Experimental research for effects of low temperature on fracture toughness JIC of structural steels [J]. Journal of railway science and engineering, 2005, 2(1): 10―13. (in Chinese)
[29]
茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM算法[J]. 工程力学, 2012, 29(7): 12―16. Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems [J]. Engineering mechanics, 2012, 29(7): 12―16. (in Chinese)