全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

沉管隧道纵向地震响应分析的多体动力学方法

DOI: 10.6052/j.issn.1000-4750.2013.11.1041, PP. 76-83

Keywords: 沉管隧道,地震响应,多体动力学,离散时间传递矩阵法,动力分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

沉管隧道纵向地震响应分析是沉管隧道抗震设计的关键。根据沉管隧道结构的几何特征和结构特点,基于合理假设建立了沉管隧道的多刚体-弹性阻尼铰-阻尼铰动力学模型,并运用多体动力学理论中的离散时间传递矩阵法(MS-DT-TMM)推导出了其数学模型及表达式。通过算例进行了沉管隧道纵向地震响应的时程分析,并将该方法与传统有限元方法的计算结果进行了对比,结果表明了MS-DT-TMM法的可行性和有效性,为快速实现沉管隧道抗震计算分析提供了新的手段。

References

[1]  Richards C M, Singh R. Characterization of rubber isolator nonlinearities in the context of single-and multi-degree-of-freedom experimental systems [J]. Journal of Sound and Vibration, 2001, 247(5): 807―834.
[2]  严松宏, 高峰, 李德武, 等. 沉管隧道地震响应分析若干问题的研究[J]. 岩石力学与工程学报, 2004, 23(5) :846―850. Yan Songhong, Gao Feng, Li Dewu, et al. Studies on some issues of seismic response analyses for submerged tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 846―850.(in Chinese)
[3]  韩大建, 周阿兴. 沉管隧道地震响应分析的等效质点系模型探讨[J]. 华南理工大学学报(自然科学版),1999, 27(11): 108―114. Han Dajian, Zhou Axing. A study on the equivalent mass-system models for the analysis for earthquake response of an immersed tunnel [J]. Journal of South China University of Technology (Natural Science), 1999, 27(11): 108―114. (in Chinese)
[4]  Yu H T, Yuan Y. Analytical solution for an infinite Euler-Bernoulli beam on a visco-elastic foundation subjected to arbitrary dynamic loads [J]. Journal of Engineering Mechanics, ASCE, 2014, 140(3): 542―551. (DOI: 10.1061/(ASCE)EM.1943-7889.0000674, SCI retrieve)
[5]  Hatzigeorgiou G D, Beskos D E. Soil-structure interaction effects on seismic inelastic analysis of 3-D tunnels [J]. Soil Dynamics and Earthquake Engineering. 2010, 30(9): 851―861.
[6]  Yu H T, Yuan Y, Bobet A. Multiscale method for long tunnels subjected to seismic loading [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(4): 374―398.
[7]  Rui X T, Lu Y Q, Pan L. Discrete time transfer matrix method for multibody system dynamics [C]. Proceedings of the EUROMECH Colloquium on Advances in Computational Multibody Dynamics, Lisbon, Portgual, 1999: 93―108.
[8]  Rui X T, He B, Lu Y Q, et al. Discrete time transfer matrix method for multibody system dynamics [J]. Multibody System Dynamics, 2005, 14(4) : 317―344.
[9]  芮筱亭, 贠来峰, 陆毓琪, 等. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008: 264―271.
[10]  Rui Xiaoting, Yuan Laifeng, Lu Yuqi, et al. Transfer matrix method of multibody system and its applications [M]. Beijing: Science Press, 2008: 264―271. (in Chinese)
[11]  戴玉伟. 基于多体系统传递矩阵法的结构地震响应分析[D]. 南京: 南京理工大学, 2013. Dai Yuwei. Structural seismic response analysis based on transfer matrix method [D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
[12]  蔡建国, 韩志宏, 冯健, 等. 多刚体动力学在结构地震响应分析中的应用[J]. 工程力学, 2010, 27(11): 250―256. Cai Jianguo, Han Zhihong, Feng Jian, et al. Application of dynamics of multi-rigid body to seismic response analysis of structures. Engineering Mechanics [J]. 2010, 27(11): 250―256. (in Chinese)
[13]  Winget J M, Huston R L. Cable dynamics-a finite segment approach [J]. Computers & Structures, 1976, 6(6): 475―480.
[14]  殷学纲. 有限段法在梁非线性振动分析中的应用[J]. 重庆大学学报, 1988, 11(11): 113―125. Yin Xuegang. Analysis of the nonlinear oscillation of beams by finite segment method [J]. Journal of Chongqing University, 1988, 11(11): 113―125. (in Chinese)
[15]  Wang R H, Li Q S, Wu J R. A spatial elastic displacement model for curved box girders with corner stiffeners. Computers and Structures [J]. Computers and Structures, 2005, 83(12): 1021―1029.
[16]  赖明, 李英民. 剪切型结构地震响应的多刚体离散分析方法[J]. 建筑结构学报, 1994, 15(6): 17―24.
[17]  Lai Ming, Li Yingmin. A discrete analysis method of multi-rigid-body model for earthquake response of shear-type structures [J]. Journal of Building Structures,1994, 15(6): 17―24. (in Chinese)
[18]  王强, 吕西林. 离散单元法在框架结构地震反应分析中的应用[J]. 地震工程与工程振动, 2004, 24(5): 73―78.
[19]  Wang Qiang, Lü Xilin. Application of DEM to seismic response analysis of frame structures [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(5): 73―78. (in Chinese)
[20]  张振秀, 聂军, 沈梅, 等. ANSYS中超弹性模型及其在橡胶工程中的应用[J]. 橡胶技术与装备, 2005, 31(9): 1―5. Zhang Zhenxiu, Nie Jun, Shen Mei, et al. Superelastic model in ANSYS and its application in rubber engineering [J]. China Rubber/Plastics Technology and Equipment, 2005, 31(9): 1―5. (in Chinese)
[21]  王松涛, 曹资. 现代抗震设计方法[M]. 北京: 中国建筑工业出版社, 1997: 115―125.
[22]  Wang Songtao, Cao Zi. Modern seismic design method [M]. Beijing: China Building Industry Press, 1997: 115―125. (in Chinese)
[23]  陈绍章. 沉管隧道设计与施工[M]. 北京: 人民交通出版社, 2002.
[24]  Chen Shaozhang. The Design and Construction of Immersed Tunnels [M]. Beijing: China Communications Press, 2002. (in Chinese)
[25]  韩大建, 唐增洪. 珠江水下沉管隧道的抗震分析与设计(II)―行波法[J]. 华南理工大学学报(自然科学版), 1997, 27(11): 122―130.
[26]  Han Dajian, Tang Zenghong. Aseismic analysis and design of the Pearl River Tunnel (II)―travelling wave method [J]. Journal of South China University of Technology (Nature Science), 1997, 27(11): 122―130. (in Chinese)
[27]  徐龙军, 谢礼立, 郝敏. 简谐波地震动反应谱研究[J]. 工程力学, 2005, 22(5): 7―13.
[28]  Xu Longjun, Xie Lili, Hao Min. On the response spectra to harmonic ground motion [J]. Engineering Mechanics, 2005, 22(5): 7―13. (in Chinese)
[29]  禹海涛, 袁勇, 刘洪洲, 等. 沉管隧道接头力学模型及刚度解析表达式[J]. 工程力学, 2014, 31(6): 145―150. Yu Haitao, Yuan Yong, Liu Hongzhou, et al. Mechanical model and analytical solution of stiffness for joints of immersed-tube tunnel [J]. Engineering Mechanics, 2014, 31(6): 145―150. (in Chinese)
[30]  周云, 汪大洋, 张敏, 等. 新型粘滞-弹性阻尼器的力学性能试验与理论研究[J]. 工程力学, 2013, 30(1): 331―338. Zhou Yun, Wang Dayang, Zhang Min, et al. Experimental and theory study on mechanical property of a new viscous-elastic damper [J]. Engineering Mechanics, 2013, 30(1): 331―338. (in Chinese)
[31]  Anastasopoulos I, Gerolymos N, Drosos V, et al. Nonlinear response of deep immersed tunnel to strong seismic shaking [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067―1090.
[32]  Kiyomiya O. Earthquake-resistant design features of immersed tunnels in Japan [J]. Tunnelling and Underground Space Technology, 1995, 10(4): 542―551.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133