全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

弹性波二维散射快速多极子间接边界元法求解

DOI: 10.6052/j.issn.1000-4750.2013.11.1034, PP. 6-7

Keywords: 弹性波散射,快速多极子展开,间接边界元法,大规模边界元计算,场地效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

求解方程的稠密矩阵特征极大削弱了传统边界元法在求解大规模实际工程问题中的优势。为此,结合快速多极子展开技术,发展一种新的高精度快速间接边界元方法,用于求解大尺度或高频弹性波二维散射问题。以全空间孔洞周围SH波散射为例,给出了具体求解步骤。算例分析表明该方法具有很高的计算精度和求解效率,同时能够大幅度降低计算存储量,可在目前主流计算机上实现上百万自由度弹性波散射问题的快速求解。最后以半空间中凹陷场地对SH波的高频散射为例,讨论了凹陷周围高频波散射的基本特征,可为峡谷地形中大型工程抗震设计提供部分理论依据。

References

[1]  廖振鹏. 工程波动理论导论[M]. 第2版. 北京: 科学出版社, 2002: 248―250. Liao Zhenpeng. Introduction to wave motion theories for engineering [M]. 2nd ed. Beijing: Science Press, 2002: 248―250. (in Chinese)
[2]  Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences [J]. Bull Seism Soc Am, 1996, 86(4): 1091―1106.
[3]  Manolis G D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM [J]. Journal of Sound and Vibration, 2003, 266(2): 281―305.
[4]  巴振宁, 梁建文, 梅雄一. 层状饱和半空间中沉积谷地对斜入射平面P1波的三维散射[J]. 工程力学, 2013, 30(9): 47―55, 62. Ba Zhenning, Liang Jianwen, Mei Xiongyi. 3D scattering by an alluvial valley embedded in a fluid-saturated, layered half-space for obliquely incident plane P1 waves [J]. Engineering Mechanics, 2013, 30(9): 47―55, 62. (in Chinese)
[5]  司炜, 许强. 二维新型快速多极虚边界元配点法[J]. 工程力学, 2012, 29(10): 52―56. Si Wei, Xu Qiang. A new fast multipole virtual boundary element collocation method for solving two-dimensional problems [J]. Engineering Mechanics, 2012, 29(10): 52―56. (in Chinese)
[6]  Xiao J, Tausch J, Hu Y. A posteriori compression of wavelet-BEM matrices [J]. Computational Mechanics, 2009, 44(5): 705―715.
[7]  姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2009. Yao Zhenhan, Wang Haitao. Boundary element methods [M]. Beijing: Higher Education Press, 2009. (in Chinese)
[8]  王海涛, 姚振汉. 快速多极边界元法在大规模传热分析中的应用[J]. 工程力学, 2008, 25(9): 23―27. Wang Haitao, Yao Zhenhan. Application of fast multipole boundary element method on large scale thermal analysis [J]. Engineering Mechanics, 2008, 25(9): 23―27. (in Chinese)
[9]  Song J, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects [J]. Antennas and Propagation, IEEE Transactions on, 1997, 45(10): 1488―1493.
[10]  雷霆, 姚振汉, 王海涛. 二维弹性力学快速多极边界元法的并行计算[C]// 全国结构工程学术会议, 2004. Lei Ting, Yao Zhenhan, Wang Haitao. Parallel computation of 2-D elastic solid using fast multipole boundary element method [C]// National Conference on Structural Engineering, 2004. (in Chinese)
[11]  Chaillat S, Bonnet M. Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics [J]. Wave Motion, 2013, 50(7): 1090―1104.
[12]  滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006, 23(增刊II): 36―48. Teng Bin , Gou Ying. Hydroelastic analysis of very large floating structure in frequency domain [J]. Engineering Mechanics, 2006, 23(Suppl II): 36―48. (in Chinese)
[13]  Shen L, Liu Y J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation [J]. Computational Mechanics, 2007, 40(3): 461―472.
[14]  Nishimura N. Fast multipole accelerated boundary integral equation methods [J]. Applied Mechanics Reviews, 2002, 55(4): 299―324.
[15]  Abramowitz M, Stegun I A. Handbook of mathematical functions [M]. New York: Dover, 1965.
[16]  王海涛. 快速多极边界元法在二维弹性力学中的应用[D]. 北京: 清华大学, 2002. Wang Haitao. Application of fast multipole boundary element method for two dimensional elasticity [D]. Beijing: Tsinghua University, 2002. (in Chinese)
[17]  Trifunac M D. Scattering of plane SH waves by a semi- cylindrical canyon [J]. Earthquake Engineering & Structural Dynamics, 1972, 1(3): 267―281.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133