全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

几何非线性与徐变共同作用下三维杆系结构有限元分析

DOI: 10.6052/j.issn.1000-4750.2013.12.1127, PP. 117-123

Keywords: 柔性混凝土结构,三维梁单元,几何非线性,徐变,共同作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

几何非线性与徐变均为大跨或高耸柔性混凝土结构分析中必须考虑的重要因素,而现有计算方法通常只单独考虑,而未考虑两者的共同作用。基于几何非线性分析的随转坐标法和徐变效应分析的初应变法,该文首先建立三维梁元在随转坐标系下计入初应变效应的几何非线性平衡方程;再利用静力平衡原则,导出三维梁元在结构坐标系下同时考虑几何非线性与徐变的平衡方程,提供了详细的分析流程,编制了相应的非线性计算程序。以某大跨径混合梁斜拉桥混凝土桥塔为例,进行了考虑混凝土徐变效应的几何非线性分析;结果表明,无论是几何非线性还是徐变,单独考虑时得到的内力和位移结果均小于考虑两者共同作用得到的结果,因此在大跨或高耸柔性混凝土结构分析中考虑几何非线性与徐变共同作用是很有必要的。

References

[1]  Edwards N P, Billington D P. FE analysis of tucker high school roof using nonlinear geometry and creep [J]. Journal of Structural Engineeirng, ASCE, 1998, 124(9): 984―990.
[2]  占玉林, 向天宇, 赵人达. 几何非线性结构的徐变效应分析[J]. 工程力学, 2006, 23(7): 45―48.
[3]  Zhan Yulin, Xiang Tianyu, Zhao Renda. Creep effect analysis of geometric nonlinear structures [J]. Engineering Mechanics, 2006, 23(7): 45―48. (in Chinese)
[4]  陈常松, 颜东煌, 李学文. 混凝土收缩徐变分析的虚功增量方程及应用[J]. 工程力学, 2010, 27(10): 139―144.
[5]  Chen Changsong, Yan Donghuang, Li Xuewen. The incremental virtual work equation for concrete shrinkage and creep analysis and its applications [J]. Engineering Mechanics, 2010, 27(10): 139―144. (in Chinese)
[6]  武文杰, 王元丰, 马伊硕. 考虑几何非线性及施工的钢管混凝土拱桥徐变[J]. 西南交通大学学报, 2013, 48(4): 645―650.
[7]  Wu Wenjie, Wang Yuanfeng, Ma Yishuo. Creep of concrete-filled steel tube arch bridge considering geometric nonlinearity and construction [J]. Journal of Southwest Jiaotong University, 2013, 48(4): 645―650. (in Chinese)
[8]  Rankin C C, Brogan F A. An element independent co-rotational procedure for the treatment of large rotation [J]. ASME Journal of Pressure Vessel Technology, 1986, 108: 165―174.
[9]  Rankin C C, Nour-Omid B. The use of projectors to improve finite element performance [J]. Computers & Structures, 1988, 30: 257―267.
[10]  邓继华, 邵旭东. 基于场一致性的可带铰空间梁元几何非线性分析[J]. 工程力学, 2013, 30(1): 91―98.
[11]  Deng Jihua, Shao Xudong. Geometric nonlinear analysis for 3-D beam with hinge based on field consistency [J]. Engineering Mechanics, 2013, 30(1): 91―98. (in Chinese)
[12]  Crisfield M A. Nonlinear finite element analysis of solids and structures [M]. Vol 2. Chichester: John Wiley & Sons, Inc, 1997: 26―45.
[13]  邓继华, 邵旭东. 基于混合单元法的预应力混凝土梁非线性分析[J]. 工程力学, 2013, 30(10): 171―177.
[14]  Deng Jihua, Shao Xudong. Nonlinear analysis of prestressed concrete beam based on hybrid element method [J]. Engineering Mechanics, 2013, 30(10): 171―177. (in Chinese)
[15]  颜东煌, 田仲初, 李学文, 涂光亚. 混凝土桥梁收缩徐变计算的有限元方法与应用[J]. 中国公路学报, 2004, 17(2): 55―58.
[16]  Yan Donghuang, Tian Zhongchu, Li Xuewen, Tu Guangya. Finite element method and application for the shrinkage and creep of concrete bridge [J]. China Journal of Highway and Transport, 2004, 17(2): 55―58. (in Chinese)
[17]  Yoshida Y, Masuda N, Morimoto T. An incremental formulation for computer analysis of space framed structures [J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1980, 300: 31―32.
[18]  万福磊, 李云贵. 一个用于大位移大转动非线性动力计算的显式梁元[J]. 工程力学, 2012, 29(11): 16―20.
[19]  Wan Fulei, Li Yungui. A beam element with explicit algorithms for large displacement and large rotation dynamic analysis [J]. Engineering Mechanics, 2012, 29(11): 16―20. (in Chinese)
[20]  肖汝诚. 桥梁结构分析及程序系统[M]. 北京: 人民交通出版社, 2002: 144―163.
[21]  Xiao Rucheng. Analysis of bridge structures and program system [M]. Beijing: China Communication Press, 2002: 144―163. (in Chinese)
[22]  陈常松. 超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究[D]. 长沙: 中南大学, 2007.
[23]  Chen Changsong. Study on refine theory of geometric nonlinear and its application for super long-span cable-stayed bridge through construction stage [D]. Changsha: Central South University, 2007. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133