全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

中美高层钢筋混凝土框架-核心筒结构抗震设计对比

DOI: 10.6052/j.issn.1000-4750.2013.12.1206, PP. 52-61

Keywords: 钢筋混凝土框架-核心筒结构,美国规范,中国规范,抗震设计,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

为综合对比中美抗震设计规范体系的总体效果,根据美国太平洋地震工程研究中心(PEER)给出的典型高层钢筋混凝土框架-核心筒结构案例的设计结果,采用中国规范对其进行了对比设计研究,详细分析了按照中、美规范设计得到的结构构件尺寸、动力特性、设计地震作用和材料用量。并建立了中美两个结构的弹塑性有限元模型,初步研究了二者的抗震性能。通过研究发现,中美抗震设计方法存在较大差异。该研究中,在相同地震危险性情况下,我国规范反应谱的设计地震作用较大,并且我国规范对结构层间位移角的限制比较严格,二者使得按照中国规范设计的结构其设计地震作用以及材料用量均显著高于美方设计结果。但中美设计方案在不同强度地震作用下的抗震性能基本相当。该文对比结果可供我国高层建筑抗震设计研究参考。

References

[1]  GB50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[2]  GB50011-2010, Code for seismic design of buildings [S]. China Architecture & Building Press: Beijing, 2010. (in Chinese)
[3]  JGJ3-2010, 高层建筑混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.
[4]  JGJ3-2010, Technical specification for concrete structures of tall building [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[5]  王亚勇, 郭子雄, 吕西林. 建筑抗震设计中地震作用取值-主要国家抗震规范比较[J]. 建筑科学, 1999, 15(5): 36―39.
[6]  Wang Yayong, Guo Zixiong, Lü Xilin. The earthquake value of seismic design - comparison of the code for seismic design with different countries [J]. Building Science, 1999, 15(5): 36―39. ( in Chinese)
[7]  罗开海, 王亚勇. 中美欧抗震设计规范地震动参数换算关系的研究[J]. 建筑结构, 2006, 36(8): 103―107.
[8]  Luo Kaihai, Wang Yayong. Research on conversion relationships among the parameters of ground motions in seismic design codes of China, America and Europe [J]. Building Structure, 2006, 36(8): 103―107. (in Chinese)
[9]  庄晓亭, 李思明. 中国与美国混凝土规范配筋量对比计算[J]. 四川建筑科学研究, 2006, 32(2): 72―75.
[10]  Zhuang Xiaoting, Li Siming. Calculational comparison of reinforcement between Chinese concrete code and US concrete code [J]. Sichuan Building Science, 2006, 32(2): 72―75. ( in Chinese)
[11]  余湛, 石树中, 沈建文, 刘峥. 从中国、美国、欧洲抗震设计规范谱的比较探讨我国的抗震设计反应谱[J]. 震灾防御技术, 2008, 3(2): 136―144.
[12]  Yu Zhan, Shi Shuzhong, Shen Jianwen, Liu Zheng. Discussing the seismic response spectrum of China from the comparison of seismic codes of China, American and Europe [J]. Technology for Earthquake Disaster Prevention, 2008, 3(2): 136―144. (in Chinese)
[13]  侯建国, 李健祥, 李扬. 中美混凝土结构抗震承载力验算安全度设置水平的比较[J]. 土木工程学报, 2010, 43(增刊1): 177―185.
[14]  Hou Jianguo, Li Jianxiang, Li Yang. Comparison on safety level of aseismic capacity of concrete structures between Chinese and American codes [J]. China Civil Engineering Journal, 2010, 43(Suppl 1): 177―185. (in Chinese)
[15]  孙玉平, 赵世春, 叶列平. 中日钢筋混凝土结构抗震设计方法比较[J]. 建筑结构, 2011, 41(5): 13―19.
[16]  Sun Yuping, Zhao Shichun, Ye Lieping. Comparative study of seismic design method for reinforced concrete structures in China and Japan [J]. Building Structure, 2011, 41(5): 13―19. (in Chinese)
[17]  Smith R. Deflection Limits in Tall Buildings - Are They Useful? [C]// Proceedings of the Structures Congress 2011. Las Vegas, Nevada: ASCE, 2011: 515―527.
[18]  Moehle J, Bozorgnia Y, Jayaram N, et al. Case studies of the seismic performance of tall buildings designed by alternative means [R]. Berkeley, California: Pacific Earthquake Engineering Research Center, University of California, 2011.
[19]  IBC 2006, International building code [S]. Falls Church, Virginia: International Code Council, 2006.
[20]  ASCE/SEI 7-05, Minimum design loads for buildings and other structures [S]. Reston, Virginia: American Society of Civil Engineers, 2005.
[21]  ACI 318-08, Building code requirements for structural concrete and commentary [S]. Farmington Hills, Michigan: American Concrete Institute, 2008.
[22]  LATBSDC, An alternative procedure for seismic analysis and design of tall buildings located in the Los Angeles region [R]. Los Angeles, California: Los Angeles Tall Buildings Structural Design Council, 2008.
[23]  TBI Guidelines Working Group. Guidelines for performance-based seismic design of tall buildings [R]. Berkeley, California: Pacific Earthquake Engineering Research Center, University of California, 2010.
[24]  GB50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[25]  GB50010-2010, Code for Design of Concrete Structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[26]  李海涛, 张富强. 高层建筑结构自振周期的计算方法探讨[J]. 河北建筑工程学院学报, 2003, 21(1): 67―68.
[27]  Li Haitao, Zhang Fuqiang. Approaches to computing natural vibration period of tall building [J]. Journal of Hebei Institute of Architectural Engineering, 2003, 21(1): 67―68. (in Chinese)
[28]  Davis Langdon. Program cost model for PEER Tall Buildings Study Concrete Dual System Structural Option [R]. Los Angeles, California: Pacific Earthquake Engineering Research Center, 2010.
[29]  Miao Z W, Ye L P, Guan H, Lu X Z. Evaluation of modal and traditional pushover analyses in frame-shear- wall structures [J]. Advances in Structural Engineering, 2011, 14(5): 815―836.
[30]  Lu X, Lu X Z, Guan H, Ye L P. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5): 705―723.
[31]  Yang T Y, Hurtato G, Moehle J P. Seismic modeling and behavior of gravity frames in high-rise building [C]// Proceedings of the 9th National Conference on Earthquake Engineering, Toronto Canada, 2010: Paper No. 826.
[32]  黄羽立, 陆新征, 叶列平, 施炜. 基于多点位移控制的推覆分析算法[J]. 工程力学, 2011, 28(2): 18―23.
[33]  Huang Yuli, Lu Xinzheng, Ye Lieping, Shi Wei. A pushover analysis algorithm based on multiple point constraints [J]. Engineering Mechanics, 2011, 28(2): 18―23. (in Chinese)
[34]  FEMA P695: Quantification of building seismic performance factors [R]. Redwood City, California: Applied Technology Council, 2009.
[35]  管娜. 中美规范荷载组合对比[J]. 武汉大学学报(工学版), 2012, 45(增刊1): 343―346.
[36]  Guan Na. Comparison of load combination between Chinese and American standards [J]. Engineering Journal of Wuhan University, 2012, 45(Suppl 1): 343―346. (in Chinese)
[37]  Zhao Z H, Jiang Z N. Comparison of base shear force method in the seismic design codes of China, America and Europe [J]. Applied Mechanics and Materials, 2012, 166: 2345―2352.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133