全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

索杆张力结构最不利预张力偏差的近似解析方法

DOI: 10.6052/j.issn.1000-4750.2013.12.1129, PP. 8-14

Keywords: 索杆张力结构,构件长度误差,最不利预张力偏差,Rayleigh商,谱分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

索杆张力结构需依靠预张力来获得初始刚度和维持稳定性,但实际工程中索长误差等因素所引起的预张力偏差不可忽视。分别以单元绝对和相对预张力偏差平方和作为结构预张力偏差的评价指标,建立了两类指标与索长误差间的二次型解析表达式。利用其中二次型矩阵Rayleigh商的极性解释了结构最不利预张力偏差的有界性。进一步对二次型矩阵进行谱分解,将结构最不利预张力偏差表示为以该矩阵特征值为权重、以索长误差在特征向量上的投影值为因子的加权平方和形式。发现二次型矩阵的特征值衰减迅速,故近似采用其一阶特征值和特征向量便能有效估计结构的最不利预张力偏差大小以及对应的索长误差分布。采用该文方法对一个实际索杆张力结构的最不利预张力偏差进行求解,并与两种常规优化算法的计算结果进行对比考察了该方法的计算精度和有效性。

References

[1]  钱若军. 张力结构的分析设计施工[M]. 南京: 东南大学出版社, 2003: 3―5.
[2]  Qian Ruojun. The analysis, design and construction of tensile structures [M]. Nanjing: Southeast University Press, 2003: 3―5. (in Chinese)
[3]  高博青, 谢忠良, 梁佶. 拉索对肋环型索穹顶结构的敏感性分析[J]. 浙江大学学报(工学版), 2005, 39(11): 1685―1689.
[4]  Gao Boqing, Xie Zhongliang, Liang Ji. Sensitivity analysis of cables to Geiger dome structure [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(11): 1685―1689. (in Chinese)
[5]  郭彦林, 王小安, 田广宇, 等. 车辐式张拉结构施工随机误差敏感性研究[J]. 施工技术, 2009, 35(3): 35―39.
[6]  Guo Yanlin, Wang Xiaoan, Tian Guangyu, et al. Sensitivity study of random errors for cable tension structures of Baoan stadium [J]. Construction Technology, 2009, 35(3): 35―39. (in Chinese)
[7]  邓华, 宋荣敏. 面向控制随机索长误差效应的索杆张力结构张拉分析[J]. 建筑结构学报, 2012, 33(5): 71―78.
[8]  Deng Hua, Song Rongmin. Pretensioning analysis of cable-strut tensile structures for controlling effect of random cable length errors [J]. Journal of Building Structures, 2012, 33(5): 71―78. (in Chinese)
[9]  张民锐. 月牙形索桁结构的预张力偏差控制技术和静力性能研究[D]. 杭州: 浙江大学, 2012.
[10]  Zhang Minrui. Study on technique of pretension deviation controlling and static behavior of a crescent-shaped cable-truss structure [D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[11]  JGJ 257-2012, 索结构技术规程[S]. 北京: 中国建筑工业出版社, 2008.
[12]  JGJ 257-2012, Technical specification for cable structures [S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)
[13]  程云鹏. 矩阵论[M]. 西安: 西北工业大学出版社, 2001: 193―195.
[14]  Cheng Yunpeng. Matrix theory [M]. Xi’an: Northwestern Polytechnical University Press, 2001: 193―195. (in Chinese)
[15]  Friedlander A, Martinez J M. On the maximization of a concave quadratic function with box constraints [J]. SIAM Journal on Optimization, 1994, 4(1): 177―192.
[16]  高岳林, 徐成贤, 杨传胜. 带有界约束非凸二次规划问题的整体优化方法[J]. 工程数学学报, 2002, 19(1): 99―103.
[17]  Gao Yuelin, Xu Chengxian, Yang Chuansheng. A global optimality method for solving the nonconvex quadratic programming problem with additional box constraints [J]. Journal of Engineering Mathematics, 2002, 19(1): 99―103. (in Chinese)
[18]  Venkataraman P. Applied optimization with MATLAB programming [M]. New York: John Wiley & Sons, 2009: 87―99.
[19]  Neumaier A. MINQ-general definite and bound constrained indefinite quadratic programming [CP]. http://www.mat.univie.ac.at/~neum/software/minq/,1998.
[20]  张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004: 485―486. Zhang Xianda. Analysis and application of matrix [M]. Beijing: Tsinghua University Press, 2004: 485―486. (in Chinese)
[21]  (上接第21页)
[22]  王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22): 36―40. Wang Rui, Zhang Xiaopeng, Kang Zhan. Topology optimization of damping layer in structures for minimizing dynamic compliance [J]. Journal of Vibration and Shock, 2013, 32(22): 36―40. (in Chinese)
[23]  刘虎, 张卫红, 朱继宏. 简谐力激励下结构拓扑优化与频率影响分析[J]. 力学学报, 2013, 45(4): 588―597. Liu Hu, Zhang Weihong, Zhu Jihong. Structural topology optimization and frequency influence analysis under harmonic force excitations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 588―597. (in Chinese)
[24]  Min S, Kikuchi N, Park Y C, Kim S, Chang S. Optimal topology design of structures under dynamic loads [J]. Structural Optimization, 1999, 17(2/3): 208―218.
[25]  Kang B S, Park G J, Arora J S. A review of optimization of structures subjected to transient loads [J]. Structural and Multidisciplinary Optimization, 2006, 31(2): 81―95.
[26]  邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009: 261―273. Qiu Jibao, Xiang Shuhong, Zhang Zhengping. Computational structural dynamics [M]. Hefei: Press of University of Science and Technology of China, 2009: 261―273. (in Chinese)
[27]  Zheng L, Xie R L, Wang Y, Adel E. Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach [J]. Shock and Vibration, 2011, 18(1/2): 221―244.
[28]  Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics, 1999, 69(9/10): 635―654.
[29]  Svanberg K. The method of moving asymptotes - a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359―373.
[30]  Sigmund O. On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 495―526.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133