全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

板结构-声场耦合分析的有限元-径向插值/有限元法

DOI: 10.6052/j.issn.1000-4750.2013.11.1102, PP. 207-214

Keywords: 有限元-径向点插值法,有限元法,径向点插值法,板结构,结构-声场耦合系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高板结构-声场耦合分析的计算精度,将有限元-径向点插值法(FiniteElement-RadialPointInterpolation,FE-RPIM)推广到板结构-声场耦合问题的结构域分析中,推导了FE-RPIM/FEM法分析板结构-声场耦合问题的计算公式。板结构-声场耦合分析的FE-RPIM/FEM法在流体域中采用标准的有限元插值函数;在结构域中采用有限元-径向点插值法,其形函数由等参单元形函数和径向点插值函数相结合构成,继承了有限元法的单元兼容性和径向点插值法的Kronecker性质,提高了插值精度。以六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的有限元/有限元法(Finiteelementmethod/Finiteelementmethod,FEM/FEM)和光滑有限元/有限元法(SmoothedFiniteElementMethod/FiniteElementMethod,SFEM/FEM)相比,FE-RPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。

References

[1]  He Z C, Liu G R, Zhong Z H, at al. A coupled edge-/ face-based smoothed finite element method for structural- acoustic problems [J]. Applied Acoustics, 2010, 71(10): 955―964.
[2]  He Z C, Liu G R, Zhong Z H, at al. Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method [J]. Finite Elements in Analysis and Design, 2010, 46(12): 1114―1121.
[3]  Craggs A. The transient response of a coupled plate-acoustic system using plate and acoustic finite elements [J]. Journal of Sound and Vibration, 1971, 15(4): 509―528.
[4]  姚凌云, 于德介, 臧献国. 壳结构声场耦合分析的光滑有限元-有限元法[J]. 中国机械工程, 2010, 21(15): 115―120.
[5]  Yao Lingyun, Yu Dejie, Zang Xianguo. Analysis of shell structural-acoustic coupling based on smoothed finite element and finite element method [J]. Chinese Mechanical Engineering, 2010, 21(15): 115―120. (in Chinese)
[6]  Liu G R, Nguyen T T, Dai K Y, at al. Theoretical aspects of the smoothed finite element method (SFEM) [J]. International Journal for Numerical Methods in Engineering, 2007, 71(8): 902―930.
[7]  张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用[J]. 计算力学学报, 2003, 20(6): 730―742.
[8]  Zhang Xiong, Song Kangzu, Lu Mingwan. Research progress and application of meshless method [J]. Chinese Journal of Computational Mechanics, 2003, 20(6): 730―742. (in Chinese)
[9]  Melenk J M, Babuska I. The partition of unity finite element method: Basic theory and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289―314.
[10]  林毅峰, 朱合华, 蔡永昌. 基于单位分解法的实体壳广义单元模型[J]. 工程力学, 2012, 29(9): 42―49. Lin Yifeng, Zhu Hehua, Cai Yongchang. A solid-shell element of partition of unity-based generalized FEM [J]. Engineering Mechanics, 2012, 29(9): 42―49. (in Chinese)
[11]  Rajendran S, Zhang B R. A “FE-Meshfree” QUAD4 element for free-vibration analysis [J]. Computer Methods in Applied Mechanicals and Engineering, 2007, 197(45/46/47/48): 3595―3604.
[12]  Rajendran S, Zhang B R. A “FE-Meshfree” QUAD4 element based on partition of unity [J]. Computer Methods in Applied Mechanicals and Engineering, 2007, 197(1/2/3/4): 128―147.
[13]  姚凌云, 于德介, 臧献国. 声学数值计算的有限元-最小二乘点插值法[J]. 中国机械工程, 2010, 21(23): 2816―2820.
[14]  Yao Lingyun, Yu Dejie, Zang Xianguo. A finite element- least square point interpolation method for acoustic numerical computation [J]. Chinese Mechanical Engineering, 2010, 21(23): 2816―2820. (in Chinese)
[15]  Yao L Y, Yu D J, Cui W Y, Zhou J W. A hybrid finite element-least square point interpolation method for solving acoustic problems [J]. Noise Control Engineering Journal, 2012, 60(1): 97―112.
[16]  Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions [J]. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1623―1648.
[17]  胡玮军, 龙述尧, 夏平, 等. 用无网格径向点插值法分析弹性地基厚板弯曲[J]. 工程力学, 2009, 26(5): 58―61,79. Hu Weijun, Long Shuyao, Xia Ping. Bending analysis of thick plate on the elastic foundation by the meshless radial point interpolation method [J]. Engineering Mechanics, 2009, 26(5): 58―61, 79. (in Chinese)
[18]  Wenterodt C, Estorff O V. Dispersion analysis of the meshfree radial point interpolation method for the Helmholtz equation [J]. International Journal for Numerical Methods in Engineering, 2009, 77(12): 1670―1689.
[19]  姚凌云. 基于分区光滑理论与无网格法的声学数值方法研究[D]. 长沙: 湖南大学, 2011.
[20]  Yao Lingyun. Research on acoustic numerical computation methods based on cell-based smoothed theory and meshless method [D]. Changsha: Hunan University, 2011. (in Chinese)
[21]  Wang J G, Liu G R. On The optimal shape parameters of radial basis functions used for 2-D meshless methods [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 191(1): 2611―2630.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133