全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于向量式有限元的T单元及其在张拉索膜结构中的应用

DOI: 10.6052/j.issn.1000-4750.2013.11.1110, PP. 62-68

Keywords: 向量式有限元,张拉索膜结构,边界,T单元,分配,插值,世博轴

Full-Text   Cite this paper   Add to My Lib

Abstract:

T单元是张拉索膜结构中的特殊单元,可使索和膜独立划分单元,并解决边界锯齿状问题。推导了基于向量式有限元的T单元。基于边界单元侧向刚度无穷大的假设,给出了质点质量分配和中间节点坐标插值的方法,通过虚拟逆向运动求解单元内力,并进行节点力的分配。编制了计算程序,并以一个简单算例验证了所推导的T单元静力计算的准确性。通过上海世博轴张拉索膜结构的断索算例验证了所推导T单元在结构与机构耦合动力计算中的正确性,分析结果表明数值计算结果与实际试验结果相符。

References

[1]  Wu T Y, Wang C Y, Chuang C C, Ting E C. Motion analysis of 3D membrane structures by a vector form intrinsic finite element [J]. Journal of the Chinese Institute of Engineers, 2007, 30(6): 961―976.
[2]  Wu T Y, Ting E C. Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element [J]. Thin-Walled Structures, 2008, 46(3): 261―275.
[3]  王震, 赵阳. 膜结构大变形分析的向量式有限元4节点膜单元[J]. 土木建筑与环境工程, 2013, 35(4): 60―67.
[4]  Wang Zhen, Zhao Yang. Four-node membrane element of vector form intrinsic finite element for large deformation analysis of membrane structures [J]. 2013, 35(4): 60―67. (in Chinese)
[5]  王震, 赵阳, 胡可. 基于向量式有限元的三角形薄板单元[J]. 工程力学, 2014, 31(1): 37―45.
[6]  Wang Zhen, Zhao Yang, Hu Ke. Triangular thin-plate element based on vector form intrinsic finite element [J]. Engineering Mechanics, 2014, 31(1): 37―45. (in Chinese)
[7]  赵阳, 彭涛, 王震. 基于向量式有限元的索杆张力结构施工成形分析[J]. 土木工程学报, 2013, 46(5): 13―21.
[8]  Zhao Yang, Peng Tao, Wang Zhen. Construction analysis of cable-strut tensile structures based on vector form intrinsic finite element [J]. China Civil Engineering Journal, 2013, 46(5): 13―21. (in Chinese)
[9]  刘宏创, 董石麟. 内外组合张弦网壳结构基于向量式有限元的断索分析(英文)[J]. 空间结构, 2012, 18(3): 86―96.
[10]  Liu Hongchuang, Dong Shilin. Cable rupture analysis of inner-outer combined reticulated shell-string structure using VFIFE [J]. Spatial Structures, 2012, 18(3): 86―96.
[11]  王勇, 魏德敏. 具有T单元张拉膜结构的找形分析[J]. 工程力学, 2005, 22(4): 215―219.
[12]  Wang Yong, Wei Demin. Form-finding analysis of tension membrane structures with T-element [J]. Engineering Mechanics, 2005, 22(4): 215―219. (in Chinese)
[13]  韩大建, 徐其功. 张拉膜结构力密度法找形分析中索边界的处理[J]. 空间结构, 2002, 8(2): 38―42.
[14]  陈务军. 膜结构工程设计[M]. 北京: 中国建筑工业出版社, 2005: 144―145.
[15]  Chen Wujun. Design of membrane structure engineering [M]. Beijing: China Architecture & Building Press, 2005: 144―145. (in Chinese)
[16]  Ting E C, Shi H C, Wang Y K. Fundamentals of a vector form intrinsic finite element: part I. Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113―122.
[17]  Ting E C, Shi H C, Wang Y K. Fundamentals of a vector form intrinsic finite element: part II. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2): 123―132.
[18]  Shi H C, Wang Y K, Ting E C. Fundamentals of a vector form intrinsic finite element: part III. Convected material frame and examples [J]. Journal of Mechanics, 2004, 20(2): 133―143.
[19]  向新岸. 张拉索膜结构的理论研究及其在上海世博轴中的应用[D]. 杭州: 浙江大学, 2010.
[20]  Xiang Xinan. Theoretical research of cable-membrane structures and application on the Expo Axis project in Shanghai [D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
[21]  Han Dajian, Xu Qigong. Treatment of cable boundaries in force density method for form-finding of tensioned membrane structures [J]. Spatial Structures, 2002, 8(2): 38―42. (in Chinese)
[22]  Technet Gmbh. Easy training manual [M]. Stuttgart: Technet Gmbh, 2006: 220―221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133