Whitney J M. Fourier analysis of clamped anisotropic plates [J]. Journal of Applied Mechanics, 1971, 38: 530―532.
[2]
Hencky H. Über ein einfaches näherungsverfahren zur bestimmung des spannungszustandes in rechteckig begrenzten scheiben, auf deren umfang nur normalspannungen wirken [M]// Von Karman T. Beiträge Zur Technischen Mechanik und Technischen Physik. Heidelberg, Springer Berlin Heidelberg, 1924: 62―73.
[3]
Galerkin B G. Rectangular plates supported by edges [M]. Moscow: Collected Papers, 1953: 3―42.
[4]
Bhaskar K, Kaushik B. Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges [J]. Composite Structures, 2004, 63(1): 63―68.
[5]
Bhaskar K, Kaushik B. Analysis of clamped unsymmetric cross-ply rectangular plates by superposition of simple exact double Fourier series solutions [J]. Composite Structures, 2005, 68(3): 303―307.
[6]
Baraigi N K. A text book of plate analysis [M]. Delhi: Khanna Publishers, 1986: 2―6.
[7]
Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells [M]. 2nd ed. New York: McGraw-Hill, 1959: 105―225.
[8]
Lekhnitskii S G. Anisotropic plates [M]. 2nd ed. New York: Gordon and Breach, 1968: 241―345.
[9]
Mbakogu F C, Pavlović M N. Bending of clamped orthotropic rectangular plates: A variational symbolic solution [J]. Computers & Structures, 2000, 77(2): 117―128.
[10]
杨加明, 孙良新, 雷呈凤. 三边夹紧一边铰支正交各向异性矩形薄板的几何非线性分析[J]. 工程力学, 2002, 19(3): 39―43. Yang Jiaming, Sun Liangxin, Lei Chengfeng. Geometrically nonlinear analysis of orthotropic rectangular thin plates with three edges clamped and one edge simply supported [J]. Engineering Mechanics, 2002, 19(3): 39―43. (in Chinese)
[11]
Green A E. Double Fourier series and boundary value problems [C]// Dunajski M, Kryński W. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1944, 40(3): 222―228.
[12]
Dickinson S M. The flexural vibration of rectangular orthotropic plates [J]. Journal of Applied Mechanics, 1969, 36(1): 101―106.