全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

考虑瞬态响应的薄板结构阻尼材料层拓扑优化

DOI: 10.6052/j.issn.1000-4750.2013.12.1128

Keywords: 结构拓扑优化,瞬态响应,非比例阻尼,逐步积分法,灵敏度分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了敷设阻尼材料的薄板结构考虑瞬态响应时阻尼材料层的最优布局问题。基于SIMP方法构造人工阻尼材料惩罚模型和结构拓扑优化模型,以阻尼材料的相对密度作为设计变量,在给定阻尼材料用量的条件下,最小化结构瞬态位移响应的时间积分。由于结构整体呈现非比例阻尼特性,采用逐步积分法对结构的振动方程进行求解。通过伴随变量法得到目标函数对设计变量的灵敏度表达式,在此基础上采用基于梯度的移动渐近线方法求解。数值算例验证了优化模型与算法的合理性和有效性。

References

[1]  刘虎, 张卫红, 朱继宏. 简谐力激励下结构拓扑优化与频率影响分析[J]. 力学学报, 2013, 45(4): 588―597. Liu Hu, Zhang Weihong, Zhu Jihong. Structural topology optimization and frequency influence analysis under harmonic force excitations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 588―597. (in Chinese)
[2]  Min S, Kikuchi N, Park Y C, Kim S, Chang S. Optimal topology design of structures under dynamic loads [J]. Structural Optimization, 1999, 17(2/3): 208―218.
[3]  Kang B S, Park G J, Arora J S. A review of optimization of structures subjected to transient loads [J]. Structural and Multidisciplinary Optimization, 2006, 31(2): 81―95.
[4]  邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009: 261―273. Qiu Jibao, Xiang Shuhong, Zhang Zhengping. Computational structural dynamics [M]. Hefei: Press of University of Science and Technology of China, 2009: 261―273. (in Chinese)
[5]  Zheng L, Xie R L, Wang Y, Adel E. Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach [J]. Shock and Vibration, 2011, 18(1/2): 221―244.
[6]  Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics, 1999, 69(9/10): 635―654.
[7]  Svanberg K. The method of moving asymptotes - a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359―373.
[8]  Sigmund O. On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 495―526.
[9]  Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197―224.
[10]  Rozvany G, Zhou M, Birker T. Generalized shape optimization without homogenization [J]. Structural Optimization, 1992, 4(3/4): 250―252.
[11]  Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics, 1999, 69(9/10): 635―654.
[12]  Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers and Structures, 1993, 49(5): 885―896.
[13]  Sui Y K, Yang D Q. A new method for structural topological optimization based on the concept of independent continuous variables and smooth model [J]. Acta Mechanica Sinica, 1998, 14(2): 179―185.
[14]  隋允康, 铁军. 结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化[J]. 工程力学, 2010, 27(增刊II): 124―134.
[15]  Sui Yunkang, Tie Jun. The ICM explicitation approach to the structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function [J]. Engineering Mechanics, 2010, 27(Suppl II): 124―134. (in Chinese)
[16]  隋允康, 叶红玲, 刘建信, 陈实, 宇慧平. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008, 25(增刊II): 7―19.
[17]  Sui Yunkang, Ye Hongling, Liu Jianxin, Chen Shi, Yu Huiping. A structural topological optimization method based on exploring conceptual root [J]. Engineering Mechanics, 2008, 25(Suppl II): 7―19. (in Chinese)
[18]  Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227―246.
[19]  Rong J H, Tang Z L, Xie Y M, Li F Y. Topological optimization design of structures under random excitations using SQP method [J]. Engineering Structures, 2013, 56(1): 2098―2106.
[20]  Yang R Z, Du J B. Microstructural topology optimization with respect to sound power radiation [J]. Structural and Multidisciplinary Optimization, 2013, 47(2): 191―206.
[21]  朱继宏, 张卫红, 邱克鹏. 结构动力学拓扑优化局部模态现象分析[J]. 航空学报, 2005, 26(4): 619―623.
[22]  Zu Jihong, Zhang Weihong, Qiu Kepeng. Investigation of localized modes in topology optimization of dynamic structures [J]. Acta Aeronautica Et Astronautica Sinica, 2005, 26(4): 619―623. (in Chinese)
[23]  郑玲, 韩志明, 谢熔炉. 主动约束阻尼板压电层电压拓扑优化研究[J]. 固体力学学报, 2012, 33(5): 471―479.
[24]  Zheng Ling, Han Zhiming, Xie Ronglu. Topology optimization design of actuation voltage in plates with active constrained layer damping treatments [J]. Chinese Journal of Solid Mechanics, 2012, 33(5): 471―479. (in Chinese)
[25]  徐斌, 管欣, 荣见华. 谐和激励下的连续体结构拓扑优化[J]. 西北工业大学学报, 2004, 22(3): 313―316.
[26]  Xu Bin, Guan Xin, Rong Jianhua. On topology optimization of continuous structures under harmonic excitation [J]. Journal of Northwestern Polytechnical University, 2004, 22(3): 313―316. (in Chinese)
[27]  彭细荣, 隋允康. 用ICM法拓扑优化静位移及频率约束下连续体结构[J]. 计算力学学报, 2006, 23(4): 391―396.
[28]  Peng Xirong, Sui Yunkang. Topological optimization of continuum structure with static displacement and frequency constraints by ICM method [J]. Chinese Jounal of Computa- tional Mechanics, 2006, 23(4): 391―396. (in Chinese)
[29]  李东泽, 于登云, 马兴瑞. 基频约束下的桁架结构半定规划法拓扑优化[J]. 工程力学, 2011, 28(2): 181―185.
[30]  Li Dongze, Yu Dengyun, Ma Xingrui. Truss topology optimization with fundamental frequency constraints via semi-definite programming [J]. Engineering Mechanics, 2011, 28(2): 181―185. (in Chinese)
[31]  薛开, 雷寰兴, 王威远. 一种新的周长约束方法在阻尼频率拓扑优化中的应用[J]. 工程力学, 2013, 30(6): 275―280.
[32]  Xue Kai, Lei Huanxing, Wang Weiyuan. An application of a new perimeter constraint method in topological optimization for damped frequency [J]. Engineering Mechanics, 2013, 30(6): 275―280. (in Chinese)
[33]  王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22): 36―40. Wang Rui, Zhang Xiaopeng, Kang Zhan. Topology optimization of damping layer in structures for minimizing dynamic compliance [J]. Journal of Vibration and Shock, 2013, 32(22): 36―40. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133