全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

高转速对电主轴系统动力学特性的影响分析

DOI: 10.6052/j.issn.1000-4750.2013.12.1192

Keywords: 高转速,主轴系统,固有频率,模态振型,影响分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

高速切削的加工质量、加工效率与高速主轴系统的动力学特性密切相关,而转速对主轴系统的动力学特性有着明显的影响。该文首先确定了由高转速所诱发的主轴系统动力学特性影响因素,包括离心力、陀螺力矩以及轴承刚度软化等,并列举了围绕上述影响因素的相关研究成果。在此基础上,基于有限元法构建了考虑转速的主轴-轴承的通用有限元模型。以某电主轴为例,分别定性或定量分析了离心力、陀螺效应、轴承的径向刚度以及上述因素的耦合对高速主轴动力学特性的影响。该文的研究表明,主轴在高速运转状态下,轴承径向刚度、离心力和陀螺效应对主轴系统动力学特性都有较显著的影响,在对高速运转状态下的主轴系统动力学建模时,必须考虑上述影响因素。

References

[1]  刘斌, 彭满华. 高速切削加工技术的现状与发展[J]. 模具工程, 2010(10): 60―66.
[2]  Liu Bin, Peng Manhua. The present state and development in high speed cutting technology [J]. Mould & Dieprojec, 2010(10): 60―66. (in Chinese)
[3]  Tang W X, Ai X, Zhang S, Jiang H. Dynamic modeling for high-speed milling system with centrifugal force and gyroscopic effect [J]. Key Engineering Materials, 2004(259/260): 848―852.
[4]  Rantatalo M, Aidanpaa J O, Goransson B, Norman P. Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 1034―1045.
[5]  Cao Yuzhong, Altintas Y. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 1342―1350.
[6]  Schmitz T L, Ziegert J C, Stanislaus C. A method for predicting chatter stability for systems with speed-dependent spindle dynamics [J]. Proceedings of NAMARC32, 2004(32): 17―24.
[7]  Lin C W, Tu J F. Model-based design of motorized spindle systems to improve dynamic performance at high speeds [J]. Journal of Manufacturing Processes, 2007, 9(2): 94―108.
[8]  Altintas Y, Budak E. Analytical prediction of stability lobes in milling [J]. Annals of the ClRP, 1995, 4(1): 357―362
[9]  Jorgensen B R, Shin Y C. Dynamics of spindle-bearing systems at high speeds including cutting load effects [J]. Journal of Manufacturing Science and Engineering, 1998, 120: 387―394.
[10]  Ahmadi K, Ahmadian H. Modelling machine tool dynamics using a distributed parameter tool-holder joint interface [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 1916―1928.
[11]  Budak E, Ertürk A, Özgüven H N. A Modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics [J]. CIRP Annals-Manufacturing Technology, 2006, 55(1): 369―372.
[12]  Li H Q, Shin Y C. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model [J]. International Journal of Machine Tools & Manufacture, 2004, 44: 347―364.
[13]  Wang W R, Chang C N. Dynamic analysis and design of a machine tool spindle-bearing system [J]. Journal of Vibration and Acoustics, 1994, 116: 280―285.
[14]  Aini R, Rahnejat H, Gohar R. Experimental investigation into bearing induced spindle vibration [J]. International Journal of Machine Tools & Manufacture, 1990, 30: 1―18.
[15]  Nelson H D. A finite rotating shaft element using timoshenko beam theory [J]. Journal of Mechanical Design, 1980, 102: 793―802.
[16]  Nelson H D, McVaugh J M. The dynamics of rotor-bearing systems using finite elements [J]. Journal of Engineering for Industry, 1976, 93(2): 593―600.
[17]  Cao Y Z, Altintas Y. A general method for the modeling of spindle-bearing systems [J]. Journal of Mechanical Design, 2004, 126(6): 1089―1104.
[18]  Xiong G L, Yi J M, Zeng C, Guo H K, Li L X. Study of the gyroscopic effect of the spindle on the stability characteristics of the milling system [J]. Journal of Materials Processing Technology, 2003, 138: 379―384.
[19]  Aristizabal-Ochoa J D. Timoshenko beam-column with generalized end conditions and nonclassical modes of vibration of shear beams [J]. Journal of Engineering Mechanics, 2004, 130(10): 1151―1159.
[20]  Van Rensburg N F J, Van der Merwe A J. Natural frequencies and modes of a Timoshenko beam [J]. Wave Motion, 2006, 44: 58―69.
[21]  Schmitz T L. Predicting high-speed machining dynamics by substructure analysis [J]. Annals of the CIRP, 2000, 49(1): 303―308.
[22]  Erturk A, Ozguven H N, Budak E. Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle-tool assemblies [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 23―32.
[23]  毛海军, 孙庆鸿, 陈南, 陈新, 何杰. 基于分布质量的Riccati传递矩阵法模型与轴系频响函数计算方法研究[J]. 东南大学学报(自然科学版), 2000, 30(6): 34―38.
[24]  Mao Haijun, Sun Qinghong, Chen Nan, Chen Xin, He Jie. The model based on continuous mass riccati transfer matrix method and research of the calculation method of frequency response function about the spindle system [J]. Journal of Southeast University (Natural Science Edition), 2000, 30(6): 34―38. (in Chinese)
[25]  Jiang Shuyun, Zheng Shufei. A modeling approach for analysis and improvement of spindle-drawbar-bearing assembly dynamics [J]. International Journal of Machine Tools & Manufacture, 2010, 50: 131―142.
[26]  Park S S, Altintas Y, Movahhedy M. Receptance coupling for end mills [J]. International Journal of Machine Tool & Manufacture, 2003, 43: 889―896.
[27]  Choi J K, Lee D G. Characteristics of a spindle bearing system with a gear located on the bearing span [J]. International Journal of Machine Tools and Manufacture, 1997, 37(2): 171―181. (in Chinese)
[28]  Kang Y, Chang Y P, Tsai J W, Chen S C, Yang L K. Integrated “CAE” strategies for the design of machine tool spindle-bearing systems [J]. Finite Elements in Analysis and Design, 2001, 37: 485―511.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133