全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

交叉式桁架臂弦杆单肢屈曲长度系数研究

DOI: 10.6052/j.issn.1000-4750.2013.12.1165, PP. 215-221

Keywords: 交叉式,桁架臂,弦杆,长度系数,屈曲载荷,梁柱理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文针对起重机一种常用的交叉式桁架结构提出了一个简化的屈曲分析模型。考虑腹杆对弦杆的限制作用,利用梁柱理论,建立简化的力学模型,利用MATLAB软件求解弦杆的屈曲载荷。通过和实际结构有限元分析得到的屈曲载荷的比较,验证了所提模型的正确性和可靠性。然后对2组腹杆的影响程度分别进行了分析,确定了起主要作用和次要作用的腹杆。忽略起次要作用的腹杆,重新推导力学模型,并对结果进行了深入的研究,实现了一种简单的确定弦杆长度系数的方法,极大的方便了工程实际的应用。

References

[1]  刘建华. 起重机桁架臂弦腹杆刚度匹配研究[D]. 大连: 大连理工大学, 2013: 2―4. Liu Jianhua. Research on crane truss structure chord and webs stiffness matching [D]. Dalian: Dalian University of Technology, 2013: 2―4. (in Chinese)
[2]  胡燕东. 工程起重机中超静定桁架结构的弹性稳定性分析[D]. 哈尔滨: 哈尔滨工业大学, 2010: 14―15. Hu Yandong. The elastic stability analysis of indeterminate truss structure in construction crane [D]. Harbin: Harbin Institute of Technology, 2010: 14―15. (in Chinese)
[3]  GB 3811-83, 起重机设计规范[S]. 北京: 北京起重运输机械研究所, 1983. GB 3811-83, Design rules for crane [S]. Beijing: China Beijing Hoisting and Conveying Machinery Design Institute, 1983. (in Chinese)
[4]  GB 3811-2008, 起重机设计规范[S]. 北京: 中国标准出版社, 2008. GB 3811-2008, Design rules for crane [S]. Beijing: Standards Press of China, 2008. (in Chinese)
[5]  徐克晋. 金属结构[M]. 北京: 机械工业出版社, 1982: 198―199. Xu Kejin. Metal structures [M]. Beijing: China Machine Press, 1982: 198―199. (in Chinese)
[6]  王金诺. 起重运输机金属结构[M]. 北京: 中国铁道出版社, 1984: 169―170. Wang Jinnuo. Metal structures of lifting and transport [M]. Beijing: China Railway Publishing House, 1984: 169―170. (in Chinese)
[7]  徐格宁. 起重运输机金属结构设计[M]. 北京: 机械工业出版社, 1997: 134―135. Xu Gening. Design of metal structures in lifting and transport [M]. Beijing: China Machine Press, 1997: 134―135. (in Chinese)
[8]  GB 50017-2003, 钢结构设计规范[S]. 北京: 中国计划出版社, 2003. GB 50017-2003, Code for design of steel structures [S]. Beijing: China Planning Press, 2003. (in Chinese)
[9]  BS 2573-1, Rules for the design of cranes Part 1: Specification for classification, stress calculations and design criteria for structures [S]. London: BSI, 1983: 31―32.
[10]  SAE J987, Rope supported lattice-type boom crane structures—method of test [S]. Pennsylvania: SAE, 1994: 16―17.
[11]  陈绍蕃. 钢结构稳定设计指南[M]. 北京: 中国建筑工业出版社, 2004: 51―56. Chen Shaofan. Guide to stability design of steel structures [M]. Beijing: China Architecture Industry Press, 2004: 51―56. (in Chinese)
[12]  王伟, 陈以一. 节点半刚性钢桁架受压腹杆计算长度分析[J]. 工程力学, 2005, 22(5): 131―135. Wang Wei, Chen Yiyi. Analysis of effective length of compressive braces in semi-rigid steel trusses [J]. Engineering Mechanics, 2005, 22(5): 131―135. (in Chinese)
[13]  Mageirou G E, Gantes C J. Buckling strength of multi-story sway, non-sway and partially-sway frames with semi-rigid connections [J]. Journal of Constructional Steel Research, 2006, 62(9): 893―905.
[14]  Boel H. Buckling length factors of hollow section members in lattice girders [D]. Eindhoven Holland: Eindhoven University of Technology, 2010.
[15]  毕尔格麦斯特 G, 斯托依普 H. 稳定理论(下卷)[M]. 王生傅, 等, 译. 北京: 中国建筑工业出版社, 1974: 42―43. Bürgermeister G, Steup H. Stability theory (Volume 2) [M]. Translated by Wang Shengfu, et al. Beijing: China Architecture Industry Press, 1974: 42―43. (in Chinese)
[16]  柏拉希 F. 金属结构的屈曲强度[M]. 同济大学钢木结构教研室, 译. 北京: 科学出版社, 1965: 263―264. Bleich F. Buckling strength of metal structures [M]. Translated by Tongji University, Department of Steel and Wood Structure. Beijing: Science Press, 1965: 263―264. (in Chinese)
[17]  BS EN1993-1-1. Eurocode3, Design of steel structures: part 1.1 general rules and rules for buildings [S]. London: BSI, 2005.
[18]  DIN 18800 Part2. Steel structures: Analysis of safety against buckling of linear members and frames [S]. Berlin: Beuth verlag GmbH, 1990.
[19]  铁摩辛柯 S P, 盖莱 J M. 弹性稳定理论[M]. 张福范, 译. 北京: 科学出版社, 1965: 63―66. Timoshenko S P, Gere J M. Theory of elastic stability [M]. Translated by Zhang Fufan. Beijing: Science Press, 1965: 63―66. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133