全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

含机构位移起重机主副臂组合臂架结构几何非线性分析

DOI: 10.6052/j.issn.1000-4750.2013.12.1176, PP. 210-218

Keywords: 履带式起重机,主副臂组合臂架结构,机构位移,几何非线性,子结构,共旋坐标法

Full-Text   Cite this paper   Add to My Lib

Abstract:

工程中很多起重机械含有控制吊重位置的机构,这些附加机构约束了起重机臂架结构承载变形后的位置。机构的作用可以等效为施加到结构上的广义外力,这些外力与结构位移和机构自由度是高度耦合的。对臂架结构按长度方向划分了多个子结构,将子结构的内部位移凝聚到了左右端面上。基于共旋坐标法,建立了随子结构一起运动的随动坐标系,推导了子结构单元的广义节点内力。以履带式起重机的主副臂组合臂架结构为例,考虑到臂架需要通过变幅机构进行约束和控制,给出了机构位移附加在臂架上的广义节点外力及其导数。最后,通过起重机的副臂工况算例,给出了在不同载荷下臂架结构位移以及约束机构位移,验证了分析方法的正确性和合理性。

References

[1]  Crisfield M A, Moita G F. A unified co-rotational framework for solids, shells and beams [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2969―2992.
[2]  Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 2285―2235.
[3]  张年文, 童根树. 平面框架几何非线性分析的修正拉格日-协同转动联合法[J]. 工程力学, 2009, 26(8): 100―106, 130. Zhang Nianwen, Tong Genshu. A corotational updated Lagrangian formulation for geometrically nonlinear analysis of 2D frames [J]. Engineering Mechanics, 2009, 26(8): 100―106, 130. (in Chinese)
[4]  古雅琦, 王海龙, 杨怀宇. 一种大变形几何非线性Euler-Bernoulli梁单元[J]. 工程力学, 2013, 30(6): 11―15. Gu Yaqi, Wan Hailong, Yang Huaiyu. A large deformation geometric nonlinear Euler-Bernoulli beam element [J]. Engineering Mechanics, 2013, 30(6): 11―15. (in Chinese)
[5]  Li Z X. A stabilized co-rotational curved quadrilateral composite shell element [J]. International Journal for Numerical Methods in Engineering, 2011, 86(8): 975―999.
[6]  邓继华, 邵旭东, 邓潇潇. 四边形八节点共旋法平面单元的几何非线性分析[J]. 工程力学, 2011, 28(7): 6―12. Deng Jihua, Shao Xudong, Deng Xiaoxiao. Geometrically nonlinear analysis using a quadrilateral 8-node co-rotational plane element [J]. Engineering Mechanics, 2011, 28(7): 6―12. (in Chinese)
[7]  孟丽霞, 陆念力, 王佳. 基于静力凝聚的高精度变截面梁单元及其几何非线性分析研究[J]. 工程力学, 2013, 30(10): 257―263. Meng Lixia, Lu Nianli, Wang Jia. The geometric nonlinearity analysis of high accuracy tapered beam element based on the static condensation [J]. Engineering Mechanics, 2013, 30(10): 257―263. (in Chinese)
[8]  齐朝晖, 孔宪超, 李坦. 复杂系统子结构界面缝合方法[J]. 工程力学, 2013, 30(9): 10―15, 21. Qi Zhaohui, Kong Xianchao, Li Tan. Substructure technique in the analysis of large-scale structure based on interfaces seaming [J]. Engineering Mechanics, 2013, 30(9): 10―15, 21. (in Chinese)
[9]  Ibrahimbegovic A. On the choice of finite rotation parameters [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 149(1/2/3/4): 49―71.
[10]  罗尧治, 董石麟. 含可动机构的杆系结构非线性力法分析[J]. 固体力学学报, 2002, 23(3): 288―294. Luo Yaozhi, Dong Shilin. Nonlinear force method analysis for space truss with mobile mechanisms [J]. Acta Mechanica Solida Sinica, 2002, 23(3): 288―294. (in Chinese)
[11]  郑君华, 袁行飞, 董石麟, 等. 基于大变形分析的动不定体系的求解[J]. 计算力学学报, 2008, 25(3): 310―314. Zheng Junhua, Yuan Xingfei, Dong Shilin, et al. Calculation of kinematically indeterminate system based on large deformation analysis [J]. Chinese Journal of Computational Mechanics, 2008, 25(3): 310―314. (in Chinese)
[12]  罗晓明, 齐朝晖, 许永生, 等. 含有整体刚体位移杆件系统的几何非线性分析[J]. 工程力学, 2011, 28(2): 62―68. Luo Xiaoming, Qi Zhaohui, Xu Yongsheng, et al. Geometric nonlinear analysis of truss systems with rigid body motions [J]. Engineering Mechanics, 2011, 28(2): 62―68. (in Chinese)
[13]  王忠全, 张其林, 常治国. 可变体系运动与变形混合问题的拟动力解法[J]. 工程力学, 2012, 29(5): 47―52. Wang Zhongquan, Zhang Qilin, Chang Zhiguo. Pseudo-dynamic solution for motion-deformation hybrid problem of mechanism systems [J]. Engineering Mechanics, 2012, 29(5): 47―52. (in Chinese)
[14]  张正元. 塔机水平臂主载荷下线性和非线性变形与内力[J]. 同济大学学报, 2000, 28(6): 731―737. Zhang Zhengyuan. Linear and nonlinear deformation and internal force of two-hanging point horizontal boom of tower crane [J]. Journal of Tongji University, 2000, 28(6): 731―737. (in Chinese)
[15]  周慎杰, 王锡平, 李文娟, 等. 履带起重机臂架有限元分析方法[J]. 山东大学学报(工学版), 2005, 35(1): 22―26. Zhou Shenjie, Wang Xiping, Li Wenjuan, et al. The finite element analysis for the boom and jib of crawler cranes [J]. Journal of Shandong University (Engineering Science), 2005, 35(1): 22―26. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133