全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

风机塔筒流固耦合分析与受力监测研究

DOI: 10.6052/j.issn.1000-4750.2013.12.1229, PP. 136-142

Keywords: 风机塔筒,流固耦合,脉动风模拟,ABAQUS仿真,现场监测

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究大型风力机塔筒在随机风荷载下的受力和变形特性,用AR法模拟脉动风,基于ABAQUS协同仿真平台对风力机进行流固耦合分析,得到了塔筒的内力和变形,并与常规静力计算结果和实测结果做了相关对比。分析表明:塔筒最大应力出现在底、中段塔筒的连接部位,门洞因洞轴线与主风向垂直并设有门框,其周围未出现明显应力集中;忽略塔身风荷载会对塔筒最大应力控制点的位置造成偏差,考虑脉动风的流固耦合分析所得结果与实测结果接近,可较真实地反映塔筒内力和变形随时间的变化特性。

References

[1]  宋俊杰. 1.5MW风力发电机塔筒与塔架的对比研究[D]. 包头: 内蒙古科技大学, 2012: 13―17. Song Junjie. The study of comparative 1.5-MW taper cylinder tower with lattice wind turbine tower [D]. Baotou: Inner Mongolia University of Science and Technology, 2012: 13―17. (in Chinese)
[2]  刘胜祥, 李德源, 黄小华. 风波联合作用下的风力机塔架疲劳特性分析[J]. 太阳能学报, 2009, 30(10): 1250―1256. Liu Shengxiang, Li Deyuan, Huang Xiaohua. Fatigue characteristic analysis of the offshore wind turbine tower under combined wind and wave [J]. Acta Energiae Solaris Sinica, 2009, 30(10): 1250―1256. (in Chinese)
[3]  徐苾璇, 吕超. 风切变对风机塔架的载荷和结构分析的影响[J]. 太阳能学报, 2012, 33(7): 1117―1122. Xu Bixuan, Lü Chao. Effect of wind shear on the load and structural analysis of the tower for wind turbine [J]. Acta Energiae Solaris Sinica, 2012, 33(7): 1117―1122. (in Chinese)
[4]  赵世林, 李德源, 黄小华. 风力机塔架在偏心荷载作用下的屈曲分析[J]. 太阳能学报, 2010, 31(7): 901―906. Zhao Shilin, Li Deyuan, Huang Xiaohua. Bucking analysis of wind turbine tower under eccentric loading [J]. Acta Energiae Solaris Sinica, 2010, 31(7): 901―906. (in Chinese)
[5]  陈严, 田鹏, 刘雄, 等. 水平轴风力机锥形塔筒的静动态特性研究[J]. 太阳能学报, 2010, 31(10): 1360―1365. Chen Yan, Tian Peng, Liu Xiong, et al. Research on static and dynamic characteristics of cone-shaped tower of HAWTs [J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1360―1365. (in Chinese)
[6]  贺文山. 考虑流固耦合效应的风电塔结构动力特性研究[D]. 北京: 北京科技大学, 2011: 48―69. He Wenshan. Study on the dynamic characteristics of wind power tower with fluid-structure interaction [D]. Beijing: University of Science and Technology Beijing, 2011: 48―69. (in Chinese)
[7]  Hsu M C, Bazilevs Y. Fluid-structure interaction modeling of wind turbines: simulating the full machine [J]. Computing Mechanics, 2012, 50: 821―833.
[8]  朱洪来, 白象忠. 流固耦合问题的描述方法及分类简化准则[J]. 工程力学, 2007, 24(10): 92―99. Zhu Honglai, Bai Xiangzhong. Description method and simplified classification rule for fluid-solid interaction problems [J]. Engineering Mechanics, 2007, 24(10): 92―99. (in Chinese)
[9]  王彬, 杨庆山. 弱耦合算法的实现及其应用[J]. 工程力学, 2008, 25(12): 48―59. Wang Bin, Yang Qingshan. The realization and application of loosely coupled algorithm [J]. Engineering Mechanics, 2008, 25(12): 48―59. (in Chinese)
[10]  Abaqus6.12 CAE user's manual [M]. USA: ABAQUS Inc, 2012: 26.1―26.7.
[11]  Abaqus6.11 analysis user's manual [M]. USA: ABAQUS Inc, 2011: 16.1.1―16.1.5.
[12]  陈法波. 海上风机结构动力反应分析[D]. 大连: 大连理工大学, 2010: 33—34. Chen Fabo. Dynamic response analysis for offshore wind turbine structure [D]. Dalian: Dalian University of Technology, 2010: 33―34. (in Chinese)
[13]  GB 50135-2006, 高耸结构设计规范[S]. 北京: 中国计划出版社, 2007. GB 50135-2006, Code for design of high-rising structure [S]. Beijing: China Planning Press, 2007. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133