全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

近断层地震动作用下多塔悬索桥的地震反应分析

DOI: 10.6052/j.issn.1000-4750.2013.03.0269, PP. 38-46

Keywords: 多塔悬索桥,近断层地震动,时程分析,地震反应,场地土效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

以泰州大桥为原型研究了多塔悬索桥近断层地震动作用下的地震反应特点,在此基础上以近断层地震动反应幅值与普通地震动反应幅值的比值作为放大系数,进一步研究了速度脉冲效应和场地土效应对桥塔和主梁地震反应的影响规律。分析结果表明:1)近断层地震动作用下多塔悬索桥位移和内力的分布规律与普通地震动基本相同;2)纵向+竖向地震输入下坚硬场地上近断层地震动对主梁竖向位移的影响最大,对主梁竖向弯矩的影响次之,对桥塔纵向位移和纵向剪力的影响相对较小。当场地土由硬变软时,边塔的地震反应增幅明显,中塔次之,主梁相对较小;3)横向+竖向地震输入下坚硬场地条件上近断层地震动对中塔横向位移的影响最大,对主梁竖向位移的影响次之,对桥塔横向剪力和主梁横向弯矩的影响相对较小。当场地土由硬变软时,主梁的横向弯矩增幅明显,桥塔次之,主梁竖向位移相对较小;4)在近断层地震动速度脉冲特性以及场地土固有周期特性的共同作用下多塔悬索桥边塔、中塔以及主梁的地震反应存在明显差异,在抗震设计时需要引起重视。

References

[1]  张新军, 赵孝平. 多塔悬索桥的研究进展[J]. 公路, 2008, 52(10): 1―7. Zhang Xinjun, Zhao Xiaoping. Advances in researches on multi-tower suspension bridges [J]. Highway, 2008, 52(10): 1―7. (in Chinese)
[2]  阮静, 马如进. 三塔双跨悬索桥动力特性分析[J]. 中国工程科学, 2010, 12(8): 82―85. Ruan Jing, Ma Rujin. Dynamic behavior analysis of Taizhou Bridge [J]. Engineering Science, 2010, 12(8): 82―85. (in Chinese)
[3]  邓育林. 大跨度三塔悬索桥动力特性及抗震性能研究[J]. 振动与冲击, 2008, 27(9): 105―110. Deng Yulin. Study on dynamic characteristic and aseismic performance of a long-span triple-tower suspension bridge [J]. Journal of Vibration and Shock, 2008, 27(9): 105―110. (in Chinese)
[4]  邓育林, 何雄君. 行波效应对大跨多塔悬索桥地震反应的影响分析[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(3): 443―447. Deng Yulin, He Xiongjun. Effect of seismic wave passage on seismic response of long-span multi-tower suspension bridges [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(3): 443―447. (in Chinese)
[5]  Cavdar O. Probabilistic sensitivity analysis of two suspension bridges in Istanbul, Turkey to near- and far-fault ground motion [J]. Natural Hazards and Earth System Sciences, 2012, 12(2): 459―473.
[6]  Adanur S, Altunisik A C, Bayraktar A, et al. Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges [J]. Natural Hazards, 2012, 64(1): 593―614.
[7]  Liao W I, Loh C H, Lee B H. Comparison of dynamic response of isolated and non-isolated continuous girder bridges subjected to near-fault ground motions [J]. Engineering Structures, 2004, 26(14): 2173―2183.
[8]  Jonsson M H, Bessason B, Haflidason E. Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6): 447―455.
[9]  Somerville P G. Magnitude scaling of the near fault rupture directivity pulse [J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 201―212.
[10]  George P M, Apostolos S P. A mathematical representation of near-fault ground motions [J]. Bulletin of Seismological Society of America, 2003, 93(3): 1099―1131.
[11]  符蓉, 叶昆, 李黎. LRB基础隔震结构在近断层脉冲型地震作用下的碰撞响应[J]. 工程力学, 2010, 27(增刊2): 298―302. Fu Rong, Ye Kun, Li Li. Seismic response of LRB base-isolated structures under near-fault pulse-like ground motions considering potential pounding [J]. Engineering Mechanics, 2010, 27(Suppl 2): 298―302. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133