全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

一维C1有限元EEP超收敛位移计算简约格式的误差估计

DOI: 10.6052/j.issn.1000-4750.2015.03.0695, PP. 16-19

Keywords: C1有限元,一维问题,超收敛,收敛阶,单元能量投影

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文对一维C1有限元后处理超收敛计算的EEP(单元能量投影)法简约格式中的位移解给出误差估计的数学证明,即对足够光滑问题的m(>3)次单元的有限元解答,采用EEP法简约格式得到的单元内任一点位移超收敛解均可以达到hm+2的收敛阶,比常规有限元位移解的收敛阶至少高一阶。

References

[1]  袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2): 1―9. Yuan Si, Wang Mei, An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM [J]. Engineering Mechanics, 2004, 21(2): 1―9. (in Chinese)
[2]  袁驷, 王枚, 和雪峰. 一维 C 1 有限元超收敛解答计算的EEP法[J]. 工程力学, 2006, 23(2): 1―9. Yuan Si, Wang Mei, He Xuefeng. Computation of super-convergent solutions in one-dimensional C 1 FEM by EEP method [J]. Engineering Mechanics, 2006, 23(2): 1―9. (in Chinese)
[3]  袁驷, 王旭, 邢沁妍, 叶康生. 具有最佳超收敛阶的EEP法计算格式-I算法公式[J]. 工程力学, 2007, 24(10): 1―5. Yuan Si, Wang Xu, Xing Qinyan, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method-I formulation [J]. Engineering Mechanics, 2007, 24(10): 1―5. (in Chinese)
[4]  Yuan Si, He Xuefeng. A self-adaptive strategy for one-dimensional FEM based on EEP method [J]. Applied Mathematics and Mechanics, 2006, 27(11): 1461―1474.
[5]  Yuan S, Xing Q, Wang X, Ye K. A self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order [J]. Applied Mathematics and Mechanics, 2008, 29(5): 591―602.
[6]  Yuan S, Du Y, Xing Q, Ye K. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2014, 35(10): 1223―1232.
[7]  赵庆华. 单元能量投影法的数学分析[D]. 长沙: 湖南大学, 2007. Zhao Qinghua. The mathematical analysis on Element Energy Projection method [D]. Changsha: Hunan University, 2007. (in Chinese)
[8]  袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014, 24(11): 1―6. Yuan Si, Xing Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM [J]. Engineering Mechanics, 2014, 24(11): 1―6. (in Chinese)
[9]  张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996, 35(4): 421―429. Zhang Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam [J]. Journal of Fudan University (Natural Science), 1996, 35(4): 421―429. (in Chinese)
[10]  赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000, 23(4): 6―11. Zhao Xinzhong, Chen Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence [J]. Journal of Natural Science of Hunan Normal University, 2000, 23(4): 6―11. (in Chinese)
[11]  Strang G, Fix G. An analysis of the finite element method [M]. London: Prentice-Hall, 1973: 107.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133