全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于拉格朗日方法的非定常空化流动研究

DOI: 10.6052/j.issn.1000-4750.2014.02.0122, PP. 222-228

Keywords: 空化,非定常,有限时间李雅普诺夫指数,拉格朗日拟序结构,粒子追踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用基于拉格朗日体系的有限时间李雅普诺夫指数、拉格朗日拟序结构和粒子追踪方法对绕水翼典型非定常云状空化流场进行研究。采用计算流体动力学方法获得空化流场数据数值,湍流模型采用经典大涡模拟方法,空化相变过程采用基于相间质量传输的Zwart模型进行处理。根据有限时间李雅普诺夫指数分布在空化核心区域定义了前缘拟序结构和尾缘拟序结构。在不同的空化发展阶段,两种拟序结构相互作用并呈现不同的分布规律,揭示不同空化发展阶段的典型流场结构。

References

[1]  Brennen C E. Cavitation and bubble dynamics [M]. Oxford: Cambridge University Press, 2013: 15―31.
[2]  Joseph D D. Cavitation in a flowing liquid [J]. Physical Review E, 1995, 51(3): R1649.
[3]  Arndt R E A. Cavitation in vertical flows [J]. Annual Review of Fluid Mechanics, 2002, 34(1): 143―175.
[4]  Wang G, Senocak I, Shyy W, et al. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551―581.
[5]  Gopalan S, Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 3414―3431.
[6]  Qin Qiao. Numerical modeling of natural and ventilated cavitating flows [D]. Minneapolis: University of Minnesota, 2004.
[7]  Huang Biao, Young Y L, Wang Guoyu, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J]. ASME Journal of Fluid Engineering, 2012, 135(7): 071301-1―071301-16.
[8]  Huang Biao, Wang Guoyu, Zhao Yu, et al. Physical and numerical investigation on transient cavitating flows [J]. Science China Technological Science, 2013, 56(9): 2207―2218.
[9]  Ji Bin, Luo Xianwu, Wu Yulin, et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil [J]. International Journal of Multiphase flow, 2013, 51(5): 33―34.
[10]  Ji Bin, Luo Xianwu, Peng Xiaoxing, et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25(4): 510―519.
[11]  Wang G, Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil [J]. Mathematical Modeling, 2006, 31(3): 417―447.
[12]  Luo Xianwu, Ji Bin, Peng Xiaoxing, et al. Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation [J]. ASME Journal of Fluids Engineering, 2012, 134(4): 041202-1―041202-10.
[13]  时素果, 王国玉, 袁海涛, 等. 绕三维水翼非定常空化流动结构的数值与实验研究[J]. 工程力学, 2012, 29(8): 346―352. Shi Suguo, Wang Guoyu, Yuan Haitao, et al. The investigation of unsteady cavitation flow structure around a three dimensional hydrofoil by numerical and experimental methods [J]. Engineering Mechanics, 2012, 29(8): 346―352. (in Chinese)
[14]  Peng J, Dabiri J O. Transport of inertial particles by Lagrangian coherent structures: application to predator- prey interaction in jellyfish feeding [J]. Journal of Fluid Mechanics, 2009, 623(3): 75―84.
[15]  Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two dimensional aperiodic flows [J]. Physica D, 2005, 212(3/4): 271―304.
[16]  Franco E, Pekarek D N, Peng J, et al. Geometry of unsteady fluid transport during fluid-structure interactions [J]. Journal of Fluid Mechanics, 2007, 589(11): 125―145.
[17]  Green M A, Rowley C W, Haller G. Detection of Lagrangian coherent structures in three-dimensional turbulence [J]. Journal of Fluid Mechanics, 2007, 572(2): 111―120.
[18]  Tang J N, Tseng C C, Wang N F. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents [J]. Acta Mechanica Sinica, 2012, 28(3): 612―624.
[19]  Smagorinsky J. General circulation experiments with the primitive equations [J]. Month Weath, 1963, 93(3): 99―165.
[20]  Kubota A, Kato H, Yamaguchi H. A new modeling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section [J]. Journal of Fluid Mechanics, 1992, 240(1): 59―96.
[21]  Zwart P J, Gerber A G, Belamri T. A two-phase flow model for predicting cavitation dynamics [C]// Yokohama, Japan, Proceedings of International Conference on Multiphase Flow, 2004: Paper No.152.
[22]  赵宇, 王国玉, 黄彪, 等. 非定常空化流动涡旋运动及其流体动力特性[J]. 力学学报, 2014, 46(2): 191―200. Zhao Yu, Wang Guoyu, Huang Biao, et al. Study of turbulent vortex and hydraulic dynamics in transient sheet/cloud cavitating flows [J]. Acta Mechanica Sinica, 2014, 46(2): 191―200. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133