全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于能量的局部火灾引起钢结构连续倒塌简化分析方法

DOI: 10.6052/j.issn.1000-4750.2014.02.0118

Keywords: 钢结构,火灾反应,连续倒塌,能量,简化方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究局部火灾引起多高层钢结构倒塌的破坏机理以及多高层钢结构在火灾下的抗倒塌性能,基于结构初始倒塌破坏机制,建立了单柱受火的火灾引起多高层钢结构倒塌分析的单自由度简化分析模型,模型将受火柱上部结构简化为三折线弹塑性弹簧模型,将受火柱简化为集中塑性铰模型,并推导了基于能量的结构反应计算公式,建立了能量的计算方法。最后通过整体结构的数值对比分析,验证了此方法用于火灾引起钢结构连续倒塌分析与计算的合理性与可行性。

References

[1]  Kapil K, Sherif El-Tawil, Fahim S. Progressive collapse analysis of seismically designed steel braced frames [J]. Journal of Constructional Steel Research, 2009, 65(3): 699―708.
[2]  General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. Washington D C, 2003.
[3]  陆新征, 李易, 叶列平. 混凝土结构防连续倒塌理论与设计方法研究[M]. 北京: 中国建筑工业出版社, 2011: 32. Lu Xinzheng, Li Yi, Ye Lieping. Theory and design method for progressive collapse prevention of concrete structures [M]. Beijing: China Building Industry Press, 2011: 32. (in Chinese)
[4]  Kwasniewski L. Nonlinear dynamic simulations of progressive collapse for a multistory building [J]. Engineering Structures, 2010, 32(5): 1223―1235.
[5]  李易, 陆新征, 英明鉴, 等. 某框支砌体结构火灾倒塌事故的模拟与分析[J]. 工程力学, 2014, 31(2): 66―72. Li Yi, Lu Xinzheng, Ying Mingjian, et al. The simulation and analysis of the collapse of a frame-supported masonry structure under fire [J]. Engineering Mechanics, 2014, 31(2): 66―72. (in Chinese)
[6]  Wang Y C. Post-buckling behavior of axially restrained and axially loaded steel columns under Fire Conditions [J]. Journal of Structural Engineering, 2004, 130(3): 371―380.
[7]  Shepherda P G, Burgess I W. On the buckling of axially restrained steel columns in fire [J]. Engineering Structures, 2011(33): 2832―2838.
[8]  Franssen J M. Failure temperature of a system comprising a restrained column submitted to fire [J]. Fire Safety Journal, 2000, 34(2): 191―207.
[9]  Correia Rodrigues J P, Cabrita Neves I, Valente J C. Experimental research on the critical temperature of compressed steel elements with restrained thermal elongation [J]. Fire Safety Journal, 2000, 35(2):77―98.
[10]  Poh K W, Bennetts I D. Behavior of steel columns at elevated temperatures [J]. Journal of Structural Engineering, 1995, 121(4): 676―684.
[11]  Ali F A, Shepherd P, Randall M, Simms I W, Connor D J, Burgress I. The effect of axial restraint on the fire resistance of steel columns [J]. Journal of Constructional Steel Research, 1998, 46(2): 1―3.
[12]  Ruirui Sun, Zhaohui Huang, lan W bugress. Progressive collapse analysis of steel structures under fire conditions [J]. Engineering structures, 2012, 34(5): 400―413.
[13]  Quiel S E, Maria E M, Ignacio P Z. Closed-form procedure for predicting the capacity and demand of steel beam-columns under fire [J]. Journal of Structural Engineering, 2011, 137(9): 967―976.
[14]  Anil A, Amit H V. Fire induced progressive collapse of steel building structures The role of interior gravity columns [J]. Engineering Structures, 2014, 58(1): 129―140.
[15]  Lee P S, Noh H C. Inelastic buckling behavior of steel members under reversed cyclic loading [J]. Engineering Structures, 2010, 32(9): 2579―2595.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133