全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

斜拉桥斜拉索的风荷载、风致振动与控制

DOI: 10.6052/j.issn.1000-4750.2014.06.ST04, PP. 1-8

Keywords: 斜拉索,气动力,风致振动,雷诺数效应,振动控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

斜拉索是斜拉桥的主要受力构件之一,其承受的风荷载占大桥总体风荷载的很大比例,准确掌握其风荷载对设计具有重要意义;同时,由于斜拉索的风致振动发生频繁,危害严重,其风致振动的机理是研究热点和难点问题,振动控制措施是设计中需要重点考虑的问题。该文全面总结了斜拉索风荷载计算方法、风致振动的种类和相关机理,介绍了利用气动措施进行振动控制的最新研究成果,为相关的机理研究和斜拉索的振动控制设计工作提供参考。

References

[1]  刘庆宽, 张峰, 马文勇, 等. 斜拉索雷诺数效应与风致振动的试验研究[J]. 振动与冲击, 2011, 30(12): 114―119. Liu Qingkuan, Zhang Feng, Ma Wenyong, et al. Tests for Reynolds number effect and wind-induced vibration of stay cables [J]. Journal of Vibration and Shock, 2011, 30(12): 114―119. (in Chinese)
[2]  Cheng Shaohong, Peter A Irwin, Hiroshi Tanaka. Experimental study on the wind-induced vibration of a dry inclined cable—Part II: Proposed mechanisms [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(12): 2254―2272.
[3]  Cheng Shaohong, Guy L Larose, Mike G Savage, Hiroshi Tanaka, Peter A Irwin. Experimental study on the wind-induced vibration of a dry inclined cable—Part I: Phenomena [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2231―2253.
[4]  Macdonald J H G, Larose G L. Two-degree-of-freedom inclined cable galloping—Part 1: General formulation and solution for perfectly tuned system [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(3): 291―307.
[5]  Macdonald J H G, Larose G L. Two-degree-of-freedom inclined cable galloping—Part 2: Analysis and prevention for arbitrary frequency ratio [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(3): 308―326.
[6]  Jakobsen J B, Andersen T L, Macdonald J H G, Nikitas N, Larose G L, Savagec M G, McAuliffe B R. Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110(1): 100―112.
[7]  Matteoni G, Georgakis C T. Effects of surface roughness and cross-sectional distortion on the wind-induced response of bridge cables in dry conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136(1): 89―100.
[8]  Benidir A, Flamand O, Gaillet L, Dimitriadis G. Impact of roughness and circularity-defect on bridge cables stability [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137(1): 1―13.
[9]  刘庆宽, 郑云飞, 白雨润, 邵奇, 刘小兵, 马文勇. 斜拉索风雨振气动抑振措施的参数优化[J]. 振动与冲击, 2015, 34(8): 31―35, 54. Liu Qingkuan, Zheng Yunfei, Bai Yurun, Shao Qi, Liu Xiaobing, Ma Wenyong. Parametric optimization of aerodynamic anti-vbiration on measure for rain-wind induced vibration of cables [J]. Journal of Vibration and Shock, 2015, 34(8): 31―35, 54. (in Chinese)
[10]  裴岷山, 张喜刚, 朱斌, 等. 斜拉桥的拉索纵桥向风荷载计算方法研究[J]. 中国工程科学, 2009, 11(3): 26―30. Pei Minshan, Zhang Xigang, Zhu Bin, et al. Study on longitudinal wind load calculation method of cables for cable-stayed bridge [J]. Engineering Sciences, 2009, 11(3): 26―30. (in Chinese)
[11]  Reynolds O. An experiment investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels [C]. London: Proceedings of the Royal Society of London, 1883: 84―99.
[12]  Rayleigh L, Strutt J W. Aeolian tones [M]. New York: Philosophical Magazine, 6th Series, 1915: 29.
[13]  Rayleigh L, Strutt J W. The theory of sound [M]. 2nd ed. New York, USA: Dover Publications, 1896: 371―372.
[14]  Karman T V. Aerodynamics [M]. Ithaca: Cornell University Press, 1954: 1―5.
[15]  Roshko A, Fiszdon W. Problems in hydrodynamics and continunm mechanics [M]. Philadelphia, Pennsylvania: SIAM, 1969: 35―36.
[16]  Dryden H L. The role of transition from laminar to turbulent flow in fluid mechanics [C]// Philadelphia, Commonwealth of Pennsylvania: University of Pennsylvania Bicentenial Conference, 1941: 1―13.
[17]  Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number [J]. Journal of Fluid Mechanics, 1961, 10(3): 345―356.
[18]  JTG/T D60-01-2004, 公路桥梁抗风设计规范[S]. 北京:人民交通出版社, 2004. JTG/T D60-01-2004, Wind-resistent design specification for highway bridges [S]. Beijing: China Communication Press, 2004. (in Chinese)
[19]  刘庆宽, 乔富贵, 张峰. 考虑雷诺数效应的斜拉索气动力试验研究[J]. 土木工程学报, 2011, 44(11): 59―65. Liu Qingkuan, Qiao Fugui, Zhang Feng. Experimental Study on cable aerodynamic forces considering Reynolds number effect [J]. China Civil Engineering Journal, 2011, 44(11): 59―65. (in Chinese)
[20]  GB50009-2001, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2006. GB50009-2001, Load code for design of building structures [S]. Beijing: China Architecture & Building Press, 2006. (in Chinese)
[21]  ANSI/ANSE 7-98, American society of civil engineers. minimum design loads for buildings and other structures [S]. New York: American Society of Civil Engineers, 1998.
[22]  NBC. National Building Code of Canada [S]. 1995.
[23]  AJI, AIJ recommendation for loads on buildings [S]. 2004.
[24]  刘庆宽, 张峰, 王毅, 等. 突风作用下圆柱结构气动特性的试验研究[J]. 振动与冲击, 2012, 31(2): 62―66, 75. Liu Qingkuan, Zhang Feng, Wang Yi, et al. Tests for aerodynamic characteristics of a circular cylinder in unsteady wind [J]. Journal of Vibration and Shock, 2012, 31(2): 62―66, 75. (in Chinese)
[25]  Shiraishi N, Matsumoto M, Kitagawa M. On unsteady aerostatic lift forces induced by the step-like varying wind flow [C]// Tokyo: The 7th Symposim on Wind Engineering, 1982: 107―113.
[26]  陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005: 139. Chen Zhengqing. Bridge wind engineering [M]. Beijing: China Communications Press, 2005: 139. (in Chinese)
[27]  朱乐东. 结构抗风试验(讲义)[M]. 上海: 同济大学土木工程防灾国家重点实验室, 2004: 46―48. Zhu Ledong. Tests of structure wind-resistance (lecture) [M]. Shanghai: State Key Laboratory for disaster reduction in Civil Engineering, 2004: 46―48. (in Chinese)
[28]  Zuo D, Jones N P, Main J A. Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment [J]. Journal Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 1124―1133.
[29]  Matsumoto M. The role of water rivulet on inclined cable aerodynamics [C]// Seoul, Korea, Proceedings of the 6th Asia-Pacific Conference on Wind Engineering. September 12-14, 2005: 63―77.
[30]  Persoon A J, Noorlander K. Full-scale measurements on the Erasmus Bridge after rain/wind induced cable vibrations [C]// Larsen A, Larose G L, Livesey F M, eds. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark, 21-24 June, 1999: 1019―1026.
[31]  Virlogeux M. Cable vibrations in cable-stayed bridges [C]// Copenhagen, Denmark, Proceedings of the International Symposium on Advances in Bridge Aerodynamics, 1998, 213―218.
[32]  Matsumoto M, Shiraishi N. Rain-wind induced vibrations of cables in cable stayed bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1/2/3): 2011―2022.
[33]  顾明, 刘慈军, 罗国强, 等. 斜拉桥拉索的风(雨)激振及控制[J]. 上海力学, 1998, 19(4): 283―288. Gu Ming, Liu Cijun, Luo Guoqiang, et al. Rain-wind induced vibration of cables on cable-stayed bridges and its control [J]. Shanghai Journal of Mechanics, 1998, 19(4): 283―288. (in Chinese)
[34]  王修勇, 陈政清, 何旭辉, 等. 洞庭湖大桥风雨振减振实验研究[J]. 桥梁建设, 2002, 32(2): 11―14. Wang Xiuyong, Chen Zhengqing, He Xuhui, et al. Research of wind-rain induced vibration and mitigating on Dongting Lake Bridge [J]. Bridge Construction, 2002, 32(2): 11―14. (in Chinese)
[35]  Matsumoto M, Saitoh T, Kitazawa M, Shirato H, Nishizaki T. Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 323―333.
[36]  Hikami Y, Shiraishi N. Rain-wind induced vibrations of cables in cable stayed bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 29(1/2/3): 409―418.
[37]  Matsumoto M, Yagi T, Goto M, Sakai S. Rain-wind-induced vibration of inclined cables at limited high reduced wind velocity region [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 1―12.
[38]  Matsumoto M, Yagi T, Liu Q K, Oishi T, Adachi Y. Effects of axial flow and Karman vortex interference on dry-state galloping of inclined stay-cables [C]// Charleston, South Carolina, USA, Proceedings of the 6th International Symposium on Cable Dynamics, September 19-22, 2005: 247―254.
[39]  Verwiebe C, Ruscheweyh H. Recent research results concerning the exciting mechanisms of rain-wind induced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76: 1005―1013.
[40]  Cheng S, Irwin P A, Jakobsen J B, Lankin J, Larose G L, Savage M G, Tanaka H, Zurell C. Divergent motion of cables exposed to skewed wind [C]// Santa Margherita Ligure, Italy, Proceedings of the 5th International Symposium on Cable Dynamics, September 15-18, 2003: 271―278.
[41]  Gu M, Lu Q. Theoretical analysis of wind-rain induced vibration of cables of cable-stayed bridges [J]. Journal of Wind Engineering, 2001, 89: 125―128.
[42]  刘庆宽. 斜拉桥斜拉索风雨振时索表面水线摆动作用及规律的试验研究[J]. 土木工程学报, 2007, 40(7): 62―67. Liu Qingkuan. Experimental study on movement of water rivulet on cable surface in rain-wind induced vibration of stay-cables [J]. China Civil Engineering Journal, 2007, 40(7): 62―67. (in Chinese)
[43]  刘庆宽. 用LES方法对斜拉桥斜拉索风雨振的机理的研究[J]. 工程力学, 2007, 24(9): 134―139. Liu Qingkuan. Study on the mechanism of rain-wind induced vibration of cables on cable-stayed bridge using LES [J]. Engineering Mechanics, 2007, 24(9): 134―139. (in Chinese)
[44]  刘庆宽, 乔富贵, 张峰. 斜拉索表面水线多相复杂摆动对索气动稳定性的影响[J]. 工程力学, 2008, 25(6): 234―240. Liu Qingkuan, Qiao Fugui, Zhang Feng. Effect of non-uniform rivulet movement on rain-wind induced of stay-cables [J]. Engineering Mechanics, 2008, 25(6): 234―240. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133