全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析

, PP. 190-197

Keywords: 钢筋混凝土短柱,有限元分析,动力性能,应变率效应,约束效应,约束混凝土等效单轴受压本构曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究在地震作用下应变率效应对约束钢筋混凝土轴压短柱力学性能的影响,该文建议了同时考虑应变率效应和箍筋约束效应的混凝土塑性模型等效单轴受压本构曲线,建立了分析约束钢筋混凝土轴压短柱在快速加载下动力行为的有限元模型。通过模拟结果与文献中试验研究结果的比较,表明该模型可有效描述约束钢筋混凝土短柱在地震作用下考虑混凝土材料应变率敏感性时的力学性能,建议的等效单轴受压本构曲线是合理的。利用该有限元模型,分析了配置箍筋构形、箍筋间距和纵筋配筋率这三个可影响约束效应的参数对约束钢筋混凝土短柱在考虑率效应时的力学性能的影响。结果表明随应变率的提高,轴压短柱的承载力明显提高,但延性降低,力-轴向变形曲线下降段变陡。箍筋构形、间距以及纵筋配筋率对约束钢筋混凝土轴压短柱的动力力学性能具有重要的影响。

References

[1]  P, Obaseki K. Strain rate-dependent interaction diagram for reinforced concrete section [J]. ACI Journal Proceedings, 1986, 83(1): 108―116.
[2]  M S. Curvature ductility of reinforced concrete beams under low and high strain rates [J]. ACI Structural Journal, 1995, 92(5): 526―534.
[3]  闫东明, 肖诗云, 等. 应变速率对混凝土特性及工程结构地震响应的影响[J]. 土木工程学报, 2005, 38(11): 1―8. Lin Gao, Yan Dongming, Xiao Shiyun, et al. Strain rate effects on the behavior of concrete and the seismic response of concrete structures [J]. China Civil Engineering Journal, 2005, 38(11): 1―8. (in Chinese)
[4]  Euro-International du Béton, CEB-FIP Model Code 1990 [S]. 1993.
[5]  P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
[6]  L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735―739.
[7]  D M, Lin G, Chen G D. Dynamic properties of plain concrete in triaxial stress state [J]. ACI Materials Journal, 2009, 106(1): 89―94.
[8]  刘铁军, 滕军, 等. 混凝土柱单轴动态抗压特性的应变率效应研究[J]. 振动与冲击, 2012, 31(2): 145―150. Zou Dujian, Liu Tiejun, Teng Jun, et al. The research on strain rate effect of compressive behaviour of concrete column [J]. Journal of Vibration and Shock, 2012, 31(2): 145―150. (in Chinese)
[9]  H C, Erki M A, Seckin M. Review of effects of loading rate on reinforced concrete [J]. Journal of Structural Engineering, 1991, 117(12): 3660―3679.
[10]  李宏男. 建筑钢筋动态试验及本构模型[J].土木工程学报, 2010, 43(4): 70―75. Li Min, Li Hongnan. Dynamic test and constitutive model for reinforcing steel [J]. China Civil Engineering Journal, 2010, 43(4): 70―75. (in Chinese)
[11]  D, Frascadore R, Ludovico M D, et al. Influence of strain rate on the seismic response of RC structures [J]. Engineering Structures, 2012, 35: 29―36.
[12]  S. Seismic performance of reinforced concrete columns with 90 degree end hooks for shear reinforcement under high speed loading [EB]. http://www.iitk.ac.in/nicee/wcee/article/0116.pdf,2000.
[13]  Doormaal J, Weerheijm J, Sluys L J. Experimental and numerical determination of the dynamic fracture energy of concrete [J]. Journal de Physique IV, 1994, 4(8): 501―506.
[14]  P A. Test for the rate effect on concrete fracture energy [M]. Jones N, Brebbia C A, Jones N, Manolis G D, et al. Structures Under Shock and Impact V. Boston: Computational Mechanics Publications in Southampton, 1998: 461―470.
[15]  G, Zhang X X, Yu R C, et al. Effect of loading rate on fracture energy of high-strength concrete [J]. Strain, 2011, 47(6): 518―524.
[16]  E, Davison B, Tyas A. Structural integrity of steel connections subjected to rapid rates of loading [DB]. http://ascelibrary.org/doi/pdf/10.1061/ 40753% 28171%29217, 2005.
[17]  G L, Ashford S A. Effects of large velocity pulses on reinforced concrete bridge columns [R]. California: University of California, Berkeley, Pacific Earthquake Engineering Research Center, 2002.
[18]  J, Suzuki N, Kaneko T, et al. Dynamic loading test of reinforced concrete columns for identification of strain rate effect [C]// Proceedings of the First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures. Pacific Earthquake Engineering Research Center, Berkeley, California, 2005: 291―304.
[19]  W, Saouma V, Haussmann G, et al. Experimental investigations of loading rate effects in reinforced concrete columns [J]. Journal of Structural Engineering, 2012, 138(8): 1032―1041.
[20]  龙业平. 基于纤维模型的钢筋混凝土柱应变率效应研究[J]. 工程力学, 2011, 28(7): 103―116. Xu Bin, Long Yeping. Study on the behavior of reinforced concrete columns with fiber model considering strain rate effect [J]. Engineering Mechanics, 2011, 28(7): 103―116. (in Chinese)
[21]  李宏男. 应变率对钢筋混凝土柱动态特性的影响[J]. 地震工程与工程振动, 2011, 31(6): 67―72. Wang Debin, Li Hongnan. Effects of strain rate on dynamic behavior of reinforced concrete column [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(6): 67―72. (in Chinese)
[22]  K F, Hansen R J, Yang C Y. Dynamic tests of reinforced concrete columns [J]. ACI Journal Proceedings, 1964, 61(3): 317―334.
[23]  S, Minami K, Wakabayashi M. Stability of slender reinforced concrete members subjected to static and dynamic loads [C]// Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 1988, Ⅷ: 901―906.
[24]  罗家谦. 钢筋混凝土轴压和偏压构件在快速变形下的性能[M]//清华大学抗震抗爆工程研究室. 科学研究报告集(第4集) 钢筋混凝土结构构件在冲击荷载下的性能. 北京: 清华大学出版社, 1986: 33―44. Chen Zhaoyuan, Luo Jiaqian. The behavior of axial and eccentric loaded RC columns under rapid rate of deformation [M]// Science Report Collection of Tsinghua Resisting Earthquake and Blast Loading Institute-The Characteristics of R/C Structure Member under Blast Loading, (4). Beijing: Tsinghua University Press, 1986: 33―44. (in Chinese)
[25]  许东. 应变率效应对钢筋混凝土柱的影响[J]. 防灾减灾工程学报, 2009, 29(6): 668―675. Xiao Shiyun, Xu Dong. Influence of strain rates on reinforced concrete column [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(6): 668―675. (in Chinese)
[26]  曾翔. 钢筋混凝土长柱快速轴心受压试验与模拟研究[J]. 工程力学, 2014, 31(4): 210―217. Xu Bin, Zeng Xiang. Experimental study and finite element analysis on the dynamic behavior of slender RC columns under concentric compressive rapid loadings [J]. Engineering Mechanics, 2014, 31(4): 210―217. (in Chinese)
[27]  B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal Proceedings, 1982, 79(1): 13―27.
[28]  P, Sim J. Axial behavior of reinforced concrete columns under dynamic loads [J]. ACI Journal Proceedings, 1986, 83(6): 1018―1025.
[29]  L, Park R, Tanaka. H. Constitutive behavior of high-strength concrete under dynamic loads [J]. ACI Structural Journal, 2000, 97(4): 619―629.
[30]  Systèmes. Abaqus analysis user’s manual (6.10)[EB]. http://abaqus.me.chalmers.se/v6.10/books/ usb/default.htm, 2010..
[31]  318-08, Building code requirements for structural concrete (ACI 318-08) and commentary-An ACI standard [S]. 2008.
[32]  50010-2002, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002. GB 50010-2002, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2002. (in Chinese)
[33]  H S, Yang K H, Lee Y H, et al. Strength and ductility of laterally confined concrete columns [J]. Canadian Journal of Civil Engineering, 2002, 29(6): 820―830.
[34]  ' geron F, Paultre P. Uniaxial confinement model for normal- and high-strength concrete columns [J]. Journal of Structural Engineering, 2003, 129(2): 241―252.
[35]  J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804―1826.
[36]  J P, Cavanagh T. Confinement effectiveness of crossties in RC [J]. Journal of Structural Engineering, 1985, 111(10): 2105―2120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133