邱宝象, 高增梁, 王效贵, 等. 基于有限元法的16MnR缺口件疲劳寿命预测方法[J]. 工程力学, 2010, 27(8): 21-27. Qiu Baoxiang, Gao Zengliang, Wang Xiaogui, et al. A fatigue life prediction method for 16MnR steel notched components based on the finite element method [J]. Engineering Mechanics, 2010, 27(8): 21-27. (in Chinese)
[2]
Susmel L, Taylor D. The theory of critical distances to estimate finite lifetime of notched components subjected to constant and variable amplitude torsional loading [J]. Engineering Fracture Mechanics, 2013, 98(1): 64-79.
[3]
Neuber H. Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress-strain law [J]. Journal of Applied Mechanics, 1961, 4(28): 544-550.
[4]
Taylor D. Applications of the theory of critical distances in failure analysis [J]. Engineering Failure Analysis, 2011, 18(2): 543-549.
[5]
Zhang G B, Sonsino C M, Sundermeier R. Method of effective stress for fatigue: Part II - Applications to V-notches and seam welds [J]. International Journal of Fatigue, 2012, 37: 24-40.
[6]
刘恩涛, 尚德广, 陈宏, 等. 多轴随机应变加载下铝合金缺口件有限元分析及寿命预测[J]. 机械强度, 2012, 34(4): 584-589. Liu Entao, Shang Deguang, Chen Hong, et al. Finite element analysis and life prediction for aluminum notched specimen under multi-axial random strain loading [J]. Journal of Mechanical Strength, 2012, 34(4): 584-589. (in Chinese)
[7]
陈健, 崔海涛, 温卫东. 基于应力场强法的缺口构件疲劳寿命预测方法研究[J]. 长春理工大学学报(自然科学版), 2010, 33(4): 87-91. Chen Jian, Cui Haitao, Wen Weidong. Research on fatigue life pridiction of notched structrues based on stress field intensity method [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2010, 33(4): 87-91. (in Chinese)
[8]
Bentachfine S, Pluvinage G, Gilgert J, et al. Notch effect in low cycle fatigue [J]. International Journal of Fatigue, 1999, 21(5): 421-430.
[9]
Sakane M, Zhang S D, Kim T J. Notch effect on multiaxial low cycle fatigue [J]. International Journal of Fatigue, 2011, 33(8): 959-968.
[10]
Tatsuo I, Sakane M. Fatigue-creep life prediction for a notched specimen of 2 1/4 Cr-1Mo steel at 600℃ [J]. Nuclear Engineering and Design, 1994, 150(1): 141-149.
[11]
Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress-strain conditions [J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(65/73): 745-755.
[12]
Smith R N, Watson P, Topper T H. A stress-strain parameter for the fatigue of metals [J]. Journal of Materials, 1970, 4(5): 767-778.
[13]
Kandil F A, Brown M W, Miller K J. Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperature [M]. London: The Metal Society Press, 1982: 203-210.
[14]
National Institute for Materials Science “Fatigue database”, Fatigue data sheet No.78 [EB/OL]. https:// tsuge.nims.go.jp/MADS/ja/sheet/Fatigue.htm, 2009-10- 01.