全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

双向地震激励下的两阶段多维Pushover分析

DOI: 10.6052/j.issn.1000-4750.2013.10.0962, PP. 188-194

Keywords: 双向地震激励,推覆分析,等效单自由度体系,模态分解,非线性反应时程分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

在模态Pushover分析方法中,由模态推覆力得到的结构力-位移关系只适合于该模态下的反应,不能合理反映结构整体在地震作用下的弹塑性发展过程。为此,针对双向地震激励下的多层偏心结构,提出了两阶段多维Pushover分析方法。第一阶段:通过双向地震激励下的模态多维Pushover分析结构在双向地震下的位移反应;第二阶段:利用第一阶段得到的组合模态系数建立新的推覆力模式,进行第二次多维Pushover分析,分析结构的弹塑性发展过程。通过算例分析表明:1)此方法能够较准确的估算结构位移沿楼层的分布特征;2)随着塑性反应和楼层数的增加,估算偏差随之增大;3)由组合模态推覆力模式的多维Pushover分析可以从整体上分析结构的弹塑性力-位移发展过程。

References

[1]  尹华伟, 汪梦甫, 周锡元. 结构静力弹塑性分析方法的研究和改进[J]. 工程力学, 2003, 20(4): 45-49. Yin Huawei, Wang Mengfu, Zhou Xiyaun. Studies and improvements on structural static pushover analysis method [J]. Engineering Mechanics, 2003, 20(4): 45-49. (in Chinese)
[2]  吕大刚, 崔双双, 陈志恒. 基于Pushover分析的钢筋混凝土框架结构抗侧向倒塌能力评定[J]. 工程力学, 2013, 30(1): 180-189. Lü Dagang, Cui Shuangshuang, Chen Zhiheng. Assessment of sidesway collapse resistant capacity of reinforced concrete frame structures based on pushover analysis [J]. Engineering Mechanics, 2013, 30(1): 180-189. (in Chinese)
[3]  汪梦甫, 周锡元. 关于结构静力弹塑性分析((Push-over)方法中的几个问题[J]. 结构工程师, 2002, 18(4): 17-22. Wang Mengpu, Zhou Xiyuan. Some problems in the static push-over analysis of structures [J]. Structural Engineering, 2002, 18(4): 17-22. (in Chinese)
[4]  Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561-582.
[5]  Chintanapakdee C, Chopra A K. Evaluation of Modal Pushover Analysis Using Vertically Irregular Frames [C]. The 13th World Conference on Earthquake Engineering, Vancouver B C, Canada, August 1-6, 2004, Paper No.2139.
[6]  Lin J L, Tsai K C. Seismic analysis of two-way asymmetric building systems under bi-directional seismic ground motions [J]. Earthquake Engineering and Structural Dynamics, 2008, 37(2): 305-328.
[7]  Bosco M, Ghersi A, Marino E M. Corrective eccentricities for assessment by the nonlinear static method of 3D structures subjected to bidirectional ground motions [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(13): 1751-1773.
[8]  Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(8): 903-927.
[9]  Reyes J C, Chopra A K. Three-dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings [J]. Earthquake Engineering and Structural Dynamics, 2011, 40(7): 789-806.
[10]  沈蒲生, 龚胡广. 多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J]. 工程力学, 2006, 23(8): 69-73. Shen Pusheng, Gong Huguang. Multi-mode pushover analysis and seismic evaluation in hybrid structures [J]. Engineering Mechanics, 2006, 23(8): 69-73. (In Chinese)
[11]  Sucuoglu H, Gunay M S. Generalized forced vectors for multi-mode pushover analysis [J]. Earthquake Engineering and Structural Dynamics, 2011,40(1):55-74.
[12]  Jiang Y, Li G, Yang D X. A modified approach of energy balance concept based multimode pushover analysis to estimate seismic demands for buildings [J]. Engineering Structures, 2010, 32(5): 1272-1283.
[13]  Manoukas G, Athanatopoulou A, I Avramidis. Multimode pushover analysis for asymmetric buildings under biaxial seismic excitation based on a new concept of the equivalent single degree of freedom system [J]. Soil Dynamics and Earthquake Engineering, 2012, 38(2): 88-96.
[14]  Fajfar P. Capacity spectrum method based on inelastic demand spectra [J]. Earthquake Engineering and Structural Dynamics, 1999, 28(9): 979-993.
[15]  Smeby W, Der Kiureghian A D. Modal combination rules for multicomponent earthquake excitation [J]. Earthquake Engineering and Structural Dynamics, 1985, 13(1): 1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133