全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

水力压裂过程的扩展有限元数值模拟方法

DOI: 10.6052/j.issn.1000-4750.2013.04.0370, PP. 123-128

Keywords: 水力压裂,数值模拟,扩展有限元,油气井,裂缝

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了基于扩展有限元法的水力压裂数值模拟方法,使水力裂缝独立于网格存在,无需预设裂缝扩展方位。在扩展有限元计算框架下,将裂缝面处理为求解域内边界,将缝内水压力转化为相关单元等效节点力;运用考虑缝内水压力作用的相互积分法来数值求解缝尖应力强度因子;采用最大能量释放率准则确定裂缝是否继续扩展及扩展方位;最终编制了计算机程序。利用该方法数值模拟了单条水力裂缝在恒定水压力作用下作非平面扩展,所得结果分别与室内试验和解析模型相对比。结果表明,数值结果与室内试验和解析解吻合较好,缝尖应力强度因子最大相对误差不高于0.45%,验证了该方法的可行性和准确性。

References

[1]  王鸿勋. 水力压裂原理 [M]. 北京: 石油工业出版社, 1987: 1-5. Wang Hongxun. Mechanisms of hydraulic fracture [M]. Beijing: Petroleum Industry Press, 1987: 1-5. (in Chinese)
[2]  张广明, 刘合, 张劲, 等. 油井水力压裂流-固耦合非线性有限元数值模拟[J]. 石油学报, 2009, 30(1): 113-116. Zhang Guangming, Liu He, Zhang Jin, et al. Simulation of hydraulic fracturing of oil well based on fluid-solid coupling equation and non-linear finite element [J]. Acta Petrolei Sinica, 2009, 30(1): 113-116. (in Chinese)
[3]  张广明, 刘合, 张劲, 等. 水平井水力压裂的三维有限元数值模拟研究[J]. 工程力学, 2011, 28(2): 101-106. Zhang Guangming, Liu He, Zhang Jin, et al. Three-dimensional finite element numerical simulation of horizontal well hydraulic fracturing [J]. Engineering Mechanics, 2011, 28(2): 101-106. (in Chinese)
[4]  张广清, 陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160-165. Zhang Guangqing, Chen Mian. Non-planar propagation of hydraulic fracture around horizontal wellbore [J]. Engineering Mechanics, 2006, 23(4): 160-165. (in Chinese)
[5]  Advani S, Lee J. Finite element model simulations associated with hydraulic fracturing [J]. Old SPE Journal, 1982, 22(2): 209-218.
[6]  Hunsweck M J, Shen Y, Lew A J. A finite element approach to the simulation of hydraulic fractures with lag [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 37: 993-1015.
[7]  赵益忠, 程远方, 曲连忠, 等. 水力压裂动态造缝的有限元模拟[J]. 石油学报, 2007, 28(6): 103-106. Zhao Yizhong, Cheng Yuanfang, Qu Lianzhong, et al. Finite element simulation of dynamic fracture in hydraulic fracturing [J]. Acta Petrolei Sinica, 2007, 28(6): 103-106. (in Chinese)
[8]  彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28(10): 228-235. Biao Fangjun, Liu He, Zhang Shicheng, et al. A numerical study of parameter influences on horizontal hydraulic fracture [J]. Engineering Mechanics, 2011, 28(10): 228-235. (in Chinese)
[9]  Es N M, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal of Numerical Method Engineering, 1999, 46: 131-150.
[10]  Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications [J]. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304.
[11]  董玉文, 任青文. 重力坝水力劈裂分析的扩展有限元法[J]. 水利学报, 2011, 42(11): 1361-1367. Dong Yuwen, Ren Qingwen. An extended finite element method for modeling hydraulic fracturing in gravity dam [J]. Shuli Xuebao, 2011, 42(11): 1361-1367. (in Chinese)
[12]  Gordeliy E, Peirce A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 253: 305-322.
[13]  Dahi-taleghani A, Olson J. Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures [J]. SPE Journal, 2011, 16(3): 575-581.
[14]  Stolarska M, Chopp D, Mo S N, et al. Modelling crack growth by level sets in the extended finite element method [J]. International Journal for Numerical Methods in Engineering, 2001, 51(8): 943-960.
[15]  Lamb A, Gorman G, Gosselin O, et al. Coupled deformation and fluid flow in fractured porous media using dual permeability and explicitly defined fracture geometry [C]. United States, Society of Petroleum Engineers, 2010: 1-15.
[16]  Rossmanith H P. Rock fracture mechanics [M]. Springer, 1983: 3-17.
[17]  Wang S, Yau J, Corten H. A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity [J]. International Journal of Fracture, 1980, 16(3): 247-259.
[18]  Cho Y, Beom H, Earmme Y. Application of a conservation integral to an interface crack interacting with singularities [J]. International Journal of Fracture, 1994, 65(1): 63-73.
[19]  姜浒, 陈勉, 张广清, 等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报, 2009, 28(7): 1321-1326. Jiang Hu, Chen Mian, Zhang Guangqing, et al. Impact of oriented perforation on hydraulic fracture initiation and propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1321-1326. (in Chinese)
[20]  Rice J R. Mathematical analysis in the mechanics of fracture [J]. Fracture: an Advanced Treatise, 1968, 2: 191-311.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133