全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

涉及离散变量的函数统计矩点估计法

DOI: 10.6052/j.issn.1000-4750.2013.04.0379, PP. 8-13

Keywords: 结构工程,统计矩,点估计法,离散变量,条件统计矩

Full-Text   Cite this paper   Add to My Lib

Abstract:

点估计法对于仅包含连续随机变量的函数和系统的随机分析具有原理简洁清晰、操作简单易行的优点,并可以直接给出除均值和标准差之外的其他低阶统计矩。然而,对于客观存在的或者是需处理为的涉及离散随机变量的系统,现有的点估计法无能为力。为解决这一问题,该文基于一般随机系统的形式解析解,导出了涉及离散变量函数和系统的统计矩估计的理论表达式;然后,将其与现有的点估计法相结合,给出了涉及离散变量的函数和系统的低阶矩估计的点估计法;最后,通过理论推导和算例分析两种方式验证了建议方法的合理性和有效性,且指出该方法对包含离散变量的一般工程随机系统分析的适用性。

References

[1]  Evans D H. An application of numerical integration techniques to statistical tolerancing [J]. Technometrics, 1967, 9(3): 441-456.
[2]  Rosenblueth E. Point estimates for probability moments [J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(10): 3812-3814.
[3]  Rosenblueth E. Two-point estimates in probabilities [J]. Applied Mathematical Modeling, 1981, 5(2): 329-335.
[4]  Harr M E. Probabilistic estimates for multivariate analyses [J]. Applied Mathematical Modeling, 1989, 13(5): 313-318.
[5]  Zhao Y G, Ono T. New point-estimates for probability moments [J]. Journal of Engineering Mechanics, 2000, 126(4): 433-436.
[6]  李洪双, 吕震宙, 袁修开. 基于Nataf变换的点估计法[J]. 科学通报, 2008, 53(6): 627-632. Li Hongshuang, Lü Zhenzhou, Yuan Xiukai. Point estimate method based on Nataf tranform [J]. Chinese Science Bulletin, 2008, 53(6): 627-632. (in Chinese)
[7]  Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 393-408.
[8]  Xu H, Rahman S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics [J]. International Journal for Numerical Methods In Engineering, 2004, 61(12): 1992-2019.
[9]  Zhao Y G, Ono T. Moment methods for structural reliability [J]. Structural Safety, 2001, 23(1): 47-75.
[10]  Zhao Y G, Ang A H-S. System reliability assessment by method of moments [J]. Journal of Structural Engineering, 2003, 129(10): 1341-1349.
[11]  Zhao Y G, Lu Z H. Fourth-moment standardization for structural reliability assessment methods [J]. Journal of Structural Engineering, 2007, 133(7): 916-924.
[12]  Zhao Y G, Lu Z H. Applicable range of the fourth-moment method for structure reliability [J]. Journal of Asian Architecture and Building Engineering, 2007, 6(1): 151-158.
[13]  范文亮, 李正良, 韩枫. 单变量函数统计矩的点估计法性能比较[J]. 工程力学, 2012, 29(9): 1-10, 16. Fan Wenliang, Li Zhengliang, Han Feng. Comparison of point estimate methods for probability moments of univariate function [J]. Engineering Mechanics, 2012, 29(9): 1-10, 16. (in Chinese)
[14]  范文亮, 李正良, 王承启. 多变量函数统计矩的点估计法性能比较[J]. 工程力学, 2012, 29(11): 1-11. Fan Wenliang, Li Zhengliang, Wang Chengqi. Comparison of point estimate methods for probability moments of multivariate function [J]. Engineering Mechanics, 2012, 29(11): 1-11. (in Chinese)
[15]  吕大刚, 于小辉, 王光远. 单地震动记录随机增量动力分析 [J]. 工程力学, 2010, 27(增刊 Ⅰ): 53-58. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Single- record random incremental dynamic analysis [J]. Engineering Mechanics, 2010, 27(Suppl Ⅰ): 53-58. (in Chinese)
[16]  Rosenblatt M. Remarks on a multivariate transformation [J]. The Annals of Mathematical Statistics, 1952, 23(3): 470-472.
[17]  Liu P L, Der Kiureghian A. Multivariate distribution models with prescribed marginals and covariances [J]. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133