S P, Sonneborn G, Pun C S J, Lundqvist P, Iping R C, Gull T R. Physical conditions in circumstellar gas surrounding SN 1987 A 12 years after outburst [J]. Astrophys, 2000, 545(1): 390―398.
[2]
J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32―40.
Peng Zhen, Weng Chunsheng. Numerical calculation of plasma ignition on pulse detonation engine [J]. Engineering Mechanics, 2012, 29(5): 242―249. (in Chinese)
[5]
J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion [J]. AIAA Journal, 1993, 31(5): 854―862.
[6]
R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13: 297―319.
[7]
Q, Sohn S. Non-linear theory of unstable fluid mixing driven by shock wave [J]. Physics of Fluids, 1997, 9(4): 1106―1124.
[8]
O, Erez L, Alon U, Oron D, Levin L A. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability [J]. Physical Review Letters, 1998, 80(8): 1654―1657.
[9]
V N. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J]. Physical Review Letters, 2002, 88(13): 134502.
[10]
C E, Jacobs J W. Experimental study of the Richtmyer-Meshkov instability of incompressible fluids [J]. Journal of Fluid Mechanics, 2003, 485(5): 243―277.
[11]
S. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios [J]. Physical Review E, 2003, 67(2): 026301.
[12]
K O. Explicit expressions for the single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers [J]. Physical Review E, 2003, 67(2): 026319.
[13]
B D, Jacobs J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF 6 interface [J]. Journal of Fluid Mechanics, 2002, 464(8): 113―136.
[14]
M A, Gao Wenbin, Mao Dekang. Numerical simulations of Richtmyer-Meshkov instabilities using conservative front-tracking method [J]. Applied Mathematics and Mechanics, 2011, 32(1): 119―132.
[15]
M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability of an air/SF 6 interface [J]. Shock Waves, 1995, 4(5): 247―252.
[16]
E, Malamud G, Elbaz Y, Levini L A, Ben-Dor G, Shvarys D, Sadot O. Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626(5): 449―475.
[17]
L, Sadot O, Oron D, Erez G, Levin L A, Shvarts D, Ben-Dor G. Study of the membrane effect on turbulent mixing measurements in shock tubes [J]. Shock Waves, 2000, 10(4): 241―251.
[18]
A A. Richtmyer-Meshkov instability of an interface between two media due to passage of two successive shocks [J]. Journal of Applied Mechanics and Technical Physics, 2000, 41(1): 23―31.
[19]
B, Drikakis D, Youngs D L, Williams R J R. Growth of a Richtmyer-Meshkov turbulent layer after reshock [J]. Physics of Fluids, 2011, 23(9): 095107.
[20]
S, Orlicz G C, Prestridge K P, et al. Influence of initial conditions on turbulent mixing in shock driven Richtmyer-Meshkov flows [C]. Honolulu, Hawaii: American Instiuted of Aeronautics and Astronautics Fluid Dynamics Conference, 2011: 2011―3710.
[21]
S, Balakrishnan K, Menon S. Growth rate predictions of single- and multi-mode Richtmyer- Meshkov instability with reshock [J]. Shock Waves, 2011, 21(6): 533―546.
[22]
A, Drikakis D. Mach number effects on shock-bubble interaction [J]. Shock Waves, 2001, 11(3): 209―218.
[23]
S R, Osher S. A new class of high accuracy TVD schemes for hyperbolic conservation laws [C]. Reno, Nevada: American Instiute of Aeronautics and Astronautics 23rd Aerospace Science Meeting, 1985: 1985―0363.
[24]
E, Malamud G, Elbaz Y, et al. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626(5): 449―475.