全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

界面初始扰动形态影响RM不稳定过程的数值研究

DOI: 10.6052/j.issn.1000-4750.2013.05.0439, PP. 244-250

Keywords: RM不稳定,激波,扰动界面,单模扰动,多模随机扰动

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Navier-Stokes(NS)方程对激波诱导扰动界面的Richtmyer-Meshkov(RM)不稳定增长过程进行了二维数值模拟,分析了初始扰动条件对反射波前后界面扰动增长的影响,并与已有的模型预测结果进行了对比和分析。研究结果发现:单模初始的扰动振幅和扰动波长都直接影响反射波前后的界面增长速率;多模随机初始的扰动振幅和扰动波长对于反射波前后界面增长的影响没有单模扰动明显,其扰动增长行为均和单模大波长扰动的增长行为相似。

References

[1]  S P, Sonneborn G, Pun C S J, Lundqvist P, Iping R C, Gull T R. Physical conditions in circumstellar gas surrounding SN 1987 A 12 years after outburst [J]. Astrophys, 2000, 545(1): 390―398.
[2]  J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32―40.
[3]  翁春生. 脉冲爆轰发动机中等离子体点火的数值计算[J]. 工程力学, 2012, 29(5): 242―249.
[4]  Peng Zhen, Weng Chunsheng. Numerical calculation of plasma ignition on pulse detonation engine [J]. Engineering Mechanics, 2012, 29(5): 242―249. (in Chinese)
[5]  J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion [J]. AIAA Journal, 1993, 31(5): 854―862.
[6]  R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13: 297―319.
[7]  Q, Sohn S. Non-linear theory of unstable fluid mixing driven by shock wave [J]. Physics of Fluids, 1997, 9(4): 1106―1124.
[8]  O, Erez L, Alon U, Oron D, Levin L A. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability [J]. Physical Review Letters, 1998, 80(8): 1654―1657.
[9]  V N. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J]. Physical Review Letters, 2002, 88(13): 134502.
[10]  C E, Jacobs J W. Experimental study of the Richtmyer-Meshkov instability of incompressible fluids [J]. Journal of Fluid Mechanics, 2003, 485(5): 243―277.
[11]  S. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios [J]. Physical Review E, 2003, 67(2): 026301.
[12]  K O. Explicit expressions for the single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers [J]. Physical Review E, 2003, 67(2): 026319.
[13]  B D, Jacobs J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF 6 interface [J]. Journal of Fluid Mechanics, 2002, 464(8): 113―136.
[14]  M A, Gao Wenbin, Mao Dekang. Numerical simulations of Richtmyer-Meshkov instabilities using conservative front-tracking method [J]. Applied Mathematics and Mechanics, 2011, 32(1): 119―132.
[15]  M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability of an air/SF 6 interface [J]. Shock Waves, 1995, 4(5): 247―252.
[16]  E, Malamud G, Elbaz Y, Levini L A, Ben-Dor G, Shvarys D, Sadot O. Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626(5): 449―475.
[17]  L, Sadot O, Oron D, Erez G, Levin L A, Shvarts D, Ben-Dor G. Study of the membrane effect on turbulent mixing measurements in shock tubes [J]. Shock Waves, 2000, 10(4): 241―251.
[18]  A A. Richtmyer-Meshkov instability of an interface between two media due to passage of two successive shocks [J]. Journal of Applied Mechanics and Technical Physics, 2000, 41(1): 23―31.
[19]  B, Drikakis D, Youngs D L, Williams R J R. Growth of a Richtmyer-Meshkov turbulent layer after reshock [J]. Physics of Fluids, 2011, 23(9): 095107.
[20]  S, Orlicz G C, Prestridge K P, et al. Influence of initial conditions on turbulent mixing in shock driven Richtmyer-Meshkov flows [C]. Honolulu, Hawaii: American Instiuted of Aeronautics and Astronautics Fluid Dynamics Conference, 2011: 2011―3710.
[21]  S, Balakrishnan K, Menon S. Growth rate predictions of single- and multi-mode Richtmyer- Meshkov instability with reshock [J]. Shock Waves, 2011, 21(6): 533―546.
[22]  A, Drikakis D. Mach number effects on shock-bubble interaction [J]. Shock Waves, 2001, 11(3): 209―218.
[23]  S R, Osher S. A new class of high accuracy TVD schemes for hyperbolic conservation laws [C]. Reno, Nevada: American Instiute of Aeronautics and Astronautics 23rd Aerospace Science Meeting, 1985: 1985―0363.
[24]  E, Malamud G, Elbaz Y, et al. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626(5): 449―475.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133