全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

柔性太阳帆航天器大角度机动控制研究

DOI: 10.6052/j.issn.1000-4750.2013.05.0409

Keywords: 柔性太阳帆,耦合效应,姿控小帆,时间最优控制,大角度机动

Full-Text   Cite this paper   Add to My Lib

Abstract:

太阳帆航天器是一种新型航天器,被广泛设计应用于深空探测任务,它依靠太阳光压力产生推进力。通过改变太阳帆的姿态可以控制太阳帆航天器的轨道,因此姿态控制对太阳帆航天器的任务具有重要意义。为了获得足够大的推进力,太阳帆具有大尺度的柔性结构,因此太阳帆航天器具有大转动惯量和大柔性的动力学特性,这对其姿态控制带来了困难。而利用太阳帆的特殊结构可以设计出一些特殊的姿态控制机构,如中心控制杆和控制小帆等,降低控制成本,改善控制效果。该文在柔性太阳帆耦合动力学降阶模型的基础上,将太阳帆的控制机构简化为中心力矩控制和端点力控制,针对太阳帆单轴大角度机动过程,研究了两种控制方法下太阳帆柔性结构对其姿态控制的影响。研究表明,通过端点力控制可以有效减小太阳帆在姿态机动过程中姿态及结构的振动幅度,可以更好的完成太阳帆的姿态机动任务。

References

[1]  Wang Weizhi. The summary of the solar sails’ deployment technology [J]. Spacecraft Recovery & Remote Sensing, 2007(2): 1―4. (in Chinese)
[2]  李东旭, 陈卫东. 大挠性航天桁架结构动力学及其主动控制研究进展[J]. 力学进展, 2008, 38(2): 167―176.
[3]  Si Hongwei, Li Dongxu, Chen Weidong. Dynamic and active control of large flexible space truss: A review [J]. Advances in Mechanics, 2008, 38(2): 167―176. (in Chinese)
[4]  陈力. 漂浮基柔性空间机械臂关节运动增广变结构控制及柔性振动主动抑制[J]. 工程力学, 2011, 28(1): 219―225.
[5]  Hong Zhaobin, Chen Li. AVSC control in joint space and active vibration suppression for free-floating space flexible manipulator based on hybrid trajectory [J]. Engineering Mechanics, 2011, 28(1): 219―225. (in Chinese)
[6]  韩潮. 挠性航天器大角度机动的振动抑制控制[J]. 系统仿真学报, 2008, 20(7): 1880―1883.
[7]  Liu Jun, Han Chao. Vibration suppression control of flexible spacecraft during large angle attitude maneuver [J]. Journal of System Simulation, 2008, 20(7): 1880―1883. (in Chinese)
[8]  陈力. 漂浮基柔性空间机械臂关节运动的分块神经网络控制及柔性振动模糊控制[J]. 工程力学, 2012, 29(5): 230―236.
[9]  Huang Dengfeng, Chen Li. Partitioned neural network control and fuzzy vibration control for free-floating space flexible manipulator [J]. Engineering Mechanics, 2012, 29(5): 230―236. (in Chinese)
[10]  王永, 梁青, 等. 太阳帆航天器姿态控制进展[C]. 北京: 中国宇航学会深空探测技术专业委员会, 2006: 250―254.
[11]  Zhang Guoqing, Wang Yong, Liang Qing, et al. Progress of attitude control for the solar sail spacecraft [C]. Beijing: Deep Space Detection Technology Professional Committee in Chinese Society of Astronautics, 2006: 250―254. (in Chinese)
[12]  B. Solar sail attitude control and dynamics, part 1 [J]. Jounal of Guidance, Control, and Dynamics, 2004, 27(4): 526―535.
[13]  李俊峰, 宝音贺西. 沿螺线轨道飞行的太阳帆航天器姿态被动控制研究[J]. 工程力学, 2008, 25(7): 212―216.
[14]  Zhang Zhiguo, Li Junfeng, Baoyin Hexi. Study on passive attitude control for solar sail with a spiral trajectory [J]. Engineering Mechanics, 2008, 25(7): 212―216. (in Chinese)
[15]  B. Solar sail attitude control and dynamics, part 2 [J]. Jounal of Guidance, Control, and Dynamics, 2004, 27(4): 536―544.
[16]  S, Michael P, Wie B, et al. AOCS performance and stability validation for large flexible solar sail spacecraft [C]. Tucson, Arizona: American Instiute of Aeronautics and Astronautics, 2005.
[17]  Derbes B, Lichodziejewski D L, Veal G. A “yank and yaw” control system for solar sails [J]. Advances in the Astronautical Sciences, 2004(19): 2893―2908.
[18]  M B, West J. Sensitivity studies of the deployment of a square inflatable solar sail with vanes [J]. Acta Astronautica, 2009, 65(7/8): 1007―1027.
[19]  B, Murphy D, Paluszek M, et al. Robust attitude control systems design for solar sails (part 1): Propellantless primary ACS [C]. Providence, Rhode Island: Ameerican Institue of Aeronautics and Astronautics, 2004.
[20]  B, Murphy D. MicroPPT-based secondary/backup ACS for a 160-m, 450-kg solar sail spacecraft [C]. Tucson, Arizona: Ameerican Institue of Aeronautics and Astronautics, 2005.
[21]  R, Shirasawa Y, Mimasu Y, et al. On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure [J]. Advances in Space Research, 2011, 48(11): 1740―1746.
[22]  B, Murphy D, Paluszek M, et al. Robust attitude control systems design for solar sails (part 2): MicroPPT-based backup ACS [C]. Providence, Rhode Island: Ameerican Institue of Aeronautics and Astronautics, 2004.
[23]  S N, Lappas V J, Wie B. A scalable bus-based attitude control system for solar sails [J]. Advances in Space Research, 2011, 48(11): 1836―1847.
[24]  Shengping, Li Junfeng, Baoyin Hexi. Passive stability design for solar sail on displaced orbits [J]. Journal of Spacecraft and Rockets, 2007, 44(5): 1071―1080.
[25]  太阳帆技术综述[J]. 航天返回与遥感, 2007(2): 1―4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133