全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于环索内力相等的椭球形弦支穹顶结构的预应力分析

DOI: 10.6052/j.issn.1000-4750.2013.05.0461

Keywords: 椭球形弦支穹顶,索撑体系,环索内力,平衡矩阵,扩展力密度法

Full-Text   Cite this paper   Add to My Lib

Abstract:

当椭球形弦支穹顶结构的同圈环索内力相等时,张拉环索是一种高效的预应力施加方式。该文利用平衡矩阵理论分析了3种常见椭球形弦支穹顶索撑体系的可行预应力模态,发现了当索撑体系的超静定次数不小于环索单元数时同圈环索内力可相等的规律。然而相比联方型和凯威特型椭球索撑体系,肋环型索撑体系的超静定次数低,同圈环索内力不能相等,导致不能直接采用张拉环索方式施加预应力。为使肋环型椭球弦支穹顶的同圈环索内力相等,采用扩展力密度法对其索撑体系重新找形分析,得到了同圈环索内力相等的改进肋环型椭球索撑体系。最后对一肋环型椭球弦支穹顶算例进行了找形分析验证,并利用ANSYS有限元软件对传统型和改进型肋环椭球弦支穹顶进行了力学性能的对比分析,提出了张拉环索施工时将张拉点布置在长轴方向下方的建议,这为以后类似工程的施工设计提供了参考依据。

References

[1]  董石麟, 赵阳. 单层柱面网壳结构的找形[J]. 工程力学, 2012, 29(6): 241―246.
[2]  Tian Wei, Dong Shilin, Zhao Yang. Form-finding of single-layer cylindrical latticed shells [J]. Engineering Mechanics, 2012, 29(6): 241―246. (in Chinese)
[3]  赵阳, 董石麟. 张拉结构找形的多坐标系力密度法[J]. 工程力学, 2010, 27(12): 64―71.
[4]  Xiang Xin’an, Zhao Yang, Dong Shilin. Force density method based on multi-coordinate-system for form-finding of tensile structures [J]. Engineering Mechanics, 2010, 27(12): 64―71. (in Chinese)
[5]  J Y, Ohsaki M. Adaptive force density method for form-finding problem of tensegrity structures [J]. International Journal of Solids and Structures, 2006, 43(18/19): 5658―5673.
[6]  M, Abe M, Tatemichi I. Design, test and realization of ‘suspen-dome’ system [J]. Journal of IASS, 1999, 40(131): 179―192.
[7]  弦支穹顶结构研究进展与工程实践[J]. 建筑钢结构进展, 2011, 13(5): 11―20.
[8]  Chen Zhihua. Research progress and engineering practice on suspen-dome structure [J]. Progress in Steel Building Structures, 2011, 13(5): 11―20. (in Chinese)
[9]  张弦结构体系[M]. 北京: 科学出版社, 2013: 177―202.
[10]  Chen Zhihua. String structures [M]. Beijing: Science Press, 2013: 177―202. (in Chinese)
[11]  邓雪, 闫翔宇, 吕小海. 东亚运动会团泊体育基地自行车馆椭球形屋盖钢结构方案[J]. 工业建筑, 2011, 41(增刊): 200―204.
[12]  Chen Zhihua, Deng Xue, Yan Xiangyu, Lü Xiaohai. Elliptic roof steel structure scheme for the Velodrome in East Asian games team [J]. Industrial Construction, 2011, 41(Suppl): 200―204. (in Chinese)
[13]  弦支穹顶结构[M]. 北京: 科学出版社, 2010: 49―114.
[14]  Chen Zhihua. Suspendome structures [M]. Beijing: Science Press, 2010: 49―114. (in Chinese)
[15]  K N, Huang D H. Static behavior of Kiewitt6 suspendome [J]. Structural Engineering and Mechanics, 2011, 37(3): 309―320.
[16]  Z H, Cao Q S, Dong S L, Fu X Y. Structural design of a practical suspendome [J]. Advanced Steel Construction, 2008, 4(4): 323―340.
[17]  Hangai, Minger Wu. Analytical method of structural behaviours of a hybrid structure consisting of cables and rigid structures [J]. Engineering Structures, 1999, 21(8): 726―736.
[18]  W J, Chen, Z H, Lam H F, Zuo C R. Analysis and design of the general and outmost-ring stiffened suspen-dome structures [J]. Engineering Structures, 2003, 25(13): 1685―1695.
[19]  Q S, Zhang Z H. A simplified strategy for force finding analysis of suspendomes [J]. Engineering Structures, 2010, 32(1): 306―318.
[20]  H C, H. Park S, Lee J. A unique feasible mode of prestress design for cable domes [J]. Finite Elements in Analysis and Design, 2012, 59(1): 44―54.
[21]  董石麟, 张志宏. 弦支穹顶初始预应力分布的确定及稳定性分析[J]. 空间结构, 2004, 10(2): 8―12.
[22]  Zhang Mingshan, Dong Shilin, Zhang Zhihong. Distribution of initial pre-stress and stability analysis of suspen-dome [J]. Spatial Structures, 2004, 10(2): 8―12. (in Chinese)
[23]  大型索杆梁张拉空间结构体系的理论研究[D]. 杭州: 浙江大学, 2003.
[24]  Zhang Zhihong. Research on the theory of large cable girder tensioning spatial structures [D]. Hangzhou: Zhejiang University, 2003. (in Chinese)
[25]  弦支穹顶结构形态分析、动力性能及静动力性能实验研究[D]. 天津: 天津大学, 2004.
[26]  Guo Yun. Shape analysis, dynamic properties study and static and dynamic field tests of suspendome structure [D]. Tianjin: Tianjin University, 2004. (in Chinese)
[27]  连续折线索单元及节点研究[D]. 天津: 天津大学, 2010.
[28]  Wu Yingjun. Analysis of sliding cable element and node [D]. Tianjin: Tianjin University, 2010. (in Chinese)
[29]  支旭东, 范峰, 沈世钊. 大连体育馆弦支穹顶结构张拉成形及静载试验研究[J]. 土木工程学报, 2012, 45(2): 1―10.
[30]  Nie Guibo, Zhi Xudong, Fan Feng, Shen Shizhao. Study of the tension formation and static test of a suspendome for Dalian Gymnasium [J]. China Civil Engineering Journal, 2012, 45(2): 1―10. (in Chinese)
[31]  弦支穹顶结构的理论研究[D]. 杭州: 浙江大学, 2004.
[32]  Zhang Mingshan. Theoretical research on suspen-dome [D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
[33]  椭球形弦支穹顶结构的静力性能、稳定性及动力特性分析与研究[D]. 西安: 西安建筑科技大学, 2011.
[34]  Wang Chenguang. Analysis and research on static, dynamic and stability performance of elliptic suspendome structure [D]. Xi’an: Xi’an University of Architecture and Technology, 2011. (in Chinese)
[35]  董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2): 22―26.
[36]  Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes [J]. Engineering Mechanics, 2005, 22(2): 22―26. (in Chinese)
[37]  陈务军, 付功义. 索杆张力结构初始预应力分布计算方法研究[J]. 工程力学, 2008, 25(5): 137―141.
[38]  Ren Tao, Chen Wujun, Fu Gongyi. Initial prestress computation procedures for tensile cable-strut structrue [J]. Engineering Mechanics, 2008, 25(5): 137―141. (in Chinese)
[39]  张杰. 可展开天线中索网结构的形态分析与设计[J]. 工程力学, 2012, 29(11): 306―312.
[40]  You Guoqiang, Zhang Jie. Structural analysis and design for cable net of deployable antenna [J]. Engineering Mechanics, 2012, 29(11): 306―312. (in Chinese)
[41]  现代空间结构[M]. 天津: 天津大学出版社, 2003: 67―72.
[42]  Liu Xiliang. Modern spatial structures [M]. Tianjin: Tianjin University Press, 2003: 67―72. (in Chinese)
[43]  索网结构和薄膜结构的形状确定分析[D]. 哈尔滨: 哈尔滨建筑大学, 1992.
[44]  Song Changyong. Analysis on form finding of Cable-nets structure and membrane structure [D]. Haerbin: Harbin University Buildings, 1992. (in Chinese)
[45]  林宏图. 索网结构动力松弛法找形的研究应用[J]. 四川建筑科学研究, 2004, 30(2): 16―17.
[46]  Cai Hongru, Lin Hongtu. The application of auto-selecting parameters dynamic relaxation method in cable-nets structure [J]. Building Science Research of Sichuan, 2004, 30(2): 16―17. (in Chinese)
[47]  宋雄彬, 王海涛. 带弹性支撑杆张拉结构整体找形分析的动力松弛法[J]. 华南理工大学学报(自然科学版), 2005, 33(11): 66―71.
[48]  Han Dajian, Song Xiongbin, Wang Haitao. Dynamic relaxation for integer form-finding analysis of tension structures with elastic supporting bars [J]. Journal of South China University of Technology (Natural Science Edition), 2005, 33(11): 66―71. (in Chinese)
[49]  王小盾, 刘锡良. 张拉整体结构的力密度法找形分析[J]. 建筑结构学报, 1999, 34(2): 33―37.
[50]  Chen Zhihua, Wang Xiaodun, Liu Xiliang. Form finding of tensegrity structures by force density method [J]. Journal of Building Structures, 1999, 34(2): 33―37. (in Chinese)
[51]  田伟, 赵阳, 董石麟. 考虑膜面二维变形的改进非线性力密度法[J]. 工程力学, 2010, 27(4): 251―255.
[52]  Xiang Xin’an, Tian Wei, Zhao Yang, Dong Shilin. Improved nonlinear force density method accounting for 2-dimensional deformations of membrane element [J]. Engineering Mechanics, 2010, 27(4): 251―255. (in Chinese)
[53]  K. Nonlinear force density method for the form-finding of minimal surface membrane structures [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 2071―2087.
[54]  陈务军, 赵俊钊. 充气膜结构的成形理论与试验研究[J]. 工程力学, 2013, 30(4): 269―274.
[55]  He Yanli, Chen Wujun, Zhao Junzhao. Research on forming theory and test of inflatable membrane structures [J]. Engineering Mechanics, 2013, 30(4): 269―274. (in Chinese)
[56]  田珺. 张拉膜结构形状确定的实验研究[J]. 工程力学, 2010, 27(4): 117―124.
[57]  Ye Jihong, Tian Jun. Experimental research on form-fingding of membrane structures [J]. Engineering Mechanics, 2010, 27(4): 117―124. (in Chinese)
[58]  董石麟, 王人鹏, 钱若军. 力密度找形分析方法及计算机实现[J]. 力学季刊, 2003, 24(4): 454―461.
[59]  Wang Chunjiang, Dong Shilin, Wang Renpeng, Qian Ruojun. Force density form-finding method and it’s computer realization [J]. Chinese Quarterly of Mechanics, 2003, 24(4): 454―461. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133