全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于谱随机有限元法的龙卷风作用下核电常规岛可靠度分析

DOI: 10.6052/j.issn.1000-4750.2013.05.0465, PP. 146-153

Keywords: 可靠度,龙卷风,谱随机有限元,概率模型,极值III型分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

在核电厂厂址处龙卷风观测记录的基础上,推导了极值III型龙卷风强度概率分布函数。建立了核电常规岛主厂房的计算模型,采用谱随机有限元法,考虑三种荷载工况下龙卷风荷载和结构抗力参数的不确定性,对结构进行龙卷风作用下的随机响应和可靠度分析。分析结果表明:厂房位于龙卷风中心时,龙卷风荷载对厂房的产生明显的扭转效应,结构顶点随机位移对规范限值的超越概率较大;当厂房位于龙卷风最大半径处,龙卷风对结构主要产生侧向推动作用,顶点随机位移对规范限值的超越概率很小。龙卷风位于厂房中心处为三种工况下的荷载最不利位置。

References

[1]  核电厂厂址选择的极端气象事件(不包括热带气旋)[S]. 北京: 国家核安全局, 1991.
[2]  HAD101-10, Extreme weather events of the nuclear power plant site selection (excluding tropical cyclone) [S]. Beijing: The National Nuclear Security Administration, 1991. (in Chinese)
[3]  张源, 吕令毅. 龙卷风风场模型及风荷载研究[J]. 建筑结构学报: 2012, 33(3): 104―110.
[4]  Tang Zhuo, Zhang Yuan, Lü Lingyi. Study on tornado model and tornado-induced wind loads [J]. Journal of Building Structures: 2012, 33(3): 104―110. (in Chinese)
[5]  刘志文, 周志勇. 大跨径斜拉桥在龙卷风作用下的响应分析[J]. 同济大学学报(自然科学版), 2005, 33(5): 569―574.
[6]  Chen Airong, Liu Zhiwen, Zhou Zhiyong. Tornado effects on large span cable-stayed bridges [J]. Journal of Tongji University (Natural Science Edition), 2005, 33(5): 569―574. (in Chinese)
[7]  Thampi, Vinay Dayal, Sarkar P P. Finite element analysis of interaction of tornados with a low-rise timber building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 369―377.
[8]  L Haan, Sarkara P P, William A, Design Gallusb. construction and performance of a large tornado simulator for wind engineering applications [J]. Engineering Structures, 2008, 30(4): 1146―1159.
[9]  Senguptaa, Fred L Haanb, Sarkarb P P, Vasanth Balaramudu. Transient loads on buildings in microburst and tornado winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2173―2187.
[10]  R G, Spanos P D. Stochastic finite elements-a spectral approach [M]. New York: Dover, 2003: 81―94.
[11]  NianZhong, Guedes Soares C. Spectral stochastic finite element analysis for laminated composite plates [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51/52): 4830―4839.
[12]  S Q, Law S S, Dynamic analysis of bridge with non-Gaussian uncertainties under a moving vehicle [J]. Probabilistic Engineering Mechanics, 2011, 26(2): 281―293.
[13]  Sudreta, Armen Der Kiureghian. Comparison of finite element reliability methods [J]. Probabilistic Engineering Mechanics, 2002, 17(4): 337―348.
[14]  林道锦, 梅刚. 结构可靠度随机有限元-理论及工程应用[M]. 北京: 清华大学出版社, 2006: 94―97.
[15]  Qin Quan, Lin Daojin, Mei Gang. Theory and applications of reliability stochastic finite element methods [M]. Beijing: Tsinghua University Press, 2006: 94―97. (in Chinese)
[16]  李典庆, 周创兵, 陈益峰. 基于随机响应面法的结构可靠度分析[J]. 工程力学, 2010, 27(9): 192―200.
[17]  Hu Ran, Li Dianqin, Zhou Chuangbing, Chen Yifeng. Structural reliability analysis using stochastic response surface method [J]. Engineering Mechanics, 2010, 27(9): 192―200. (in Chinese)
[18]  李朝阳. 结构随机分析的向量型层递响应面法[J]. 工程力学, 2012, 29(11): 58―64.
[19]  Yang Lufeng, Li Zhaoyang. Vectorial cooperative response surface method for stochastic analysis of structures [J]. Engineering Mechanics, 2012, 29(11): 58―64. (in Chinese)
[20]  Xiu, George Em Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619―644.
[21]  S P, Quek S T, Phoon K K. Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes [J]. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029―1043.
[22]  50017-2003, 钢结构设计规范[S]. 北京: 中国计划出版社, 2003.
[23]  GB 50017-2003, Code for design of steel structures [S]. Beijing: China Planning Press, 2003. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133