全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

砂岩渗透性演化特性的孔隙率分布细观模拟分析

DOI: 10.6052/j.issn.1000-4750.2013.05.0443, PP. 124-131

Keywords: 砂岩,孔隙率分布,渗透性,围压效应,体应变,细观模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过不同围压下的三轴渗透试验,获得砂岩全应力-应变过程中渗透率变化数据。基于试验结果,建立砂岩试件离散元颗粒流数值模型,模拟得到砂岩压缩变形过程中体应变、孔隙率分布和黏结断裂特征。考虑围压效应,从细观机制上解释了动态孔隙率分布对渗透性演化特性的影响。研究结果表明,低围压下砂岩出现贯通的剪切带,裂隙易张开,对渗流具有显著的促进作用。围压越高,砂岩试样的黏结断裂数量和范围越大,裂隙数量增多,但裂隙和孔洞也容易被压密,从而对渗流起抑制作用。贯通的张开裂隙会大幅增加渗透性,而曲折间断的张开裂隙只会小幅增加渗透性,周围被闭合裂隙和压密的孔洞包裹的完全孤立的张开裂隙则对渗透性贡献很小。

References

[1]  J. 多孔介质流体动力学[M]. 李竞生等, 译. 北京: 中国建筑工业出版社, 1983: 31―34.
[2]  Bear J. Dynamics of fluids in porous medis [M]. Li Jingsheng, et al translated. Beijing: China Architecture & Building Press, 1983: 31―34. (in Chinese)
[3]  W, Wong T F. The transition from brittle faulting to cataclastic flow: permeability evolution [J]. Journal of Geophysical Research, 1997, 102(B2): 3027―3041.
[4]  唐平, 缪协兴, 等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学, 2011, 26(9): 1385―1389.
[5]  Huang Xianwu, Tang Ping, Miao Xiexing, et al. Testing study on seepage properties of broken sandstone [J]. Rock and Soil Mechanics, 2011, 26(9): 1385―1389. (in Chinese)
[6]  王恩志, 刘晓丽. 压缩带形成过程中渗透性变化试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 991―997.
[7]  Han Guofeng, Wang Enzhi, Liu Xiaoli. Experimental study of permeability change during compaction bands formation [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 991―997. (in Chinese)
[8]  P A, Jing X D, Zimmerman R W, et al. Predicting the permeability of sandstone from image analysis of pore structure [J]. Journal of Applied Physics, 2002, 92(10): 6311―6319.
[9]  S, Blunt M. Prediction of relative permeability in simple porous media [J]. Physical Review (A), 1992, 46(4): 2004―2011.
[10]  上官子昌, 孙伟, 等. 多孔岩土材料渗透系数与孔隙率关系随机模拟[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(4): 589―594.
[11]  Li Shouju, Shangguan Zichang, Sun Wei, et al. Simulation on relationship between hydraulic conductivity and porosity for porous soils [J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(4): 589―594. (in Chinese)
[12]  袁梅. 多孔介质渗流场数值模拟分析[J]. 矿业研究与开发, 2012, 32(1): 100―103.
[13]  Li Fei, Yuan Mei. Numerical simulation and analysis of seepage flow filed in porous media [J]. Mining Research and Development, 2012, 32(1): 100―103. (in Chinese)
[14]  李宏, 陈旭, 等. 渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J]. 岩石力学与工程学报, 2013, 32(6): 1203―1213.
[15]  Yu Jin, Li Hong, Chen Xu, et al. Triaxial experimental study on sandstone of the permeability-strain relationship under coupling effects of seepage and stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6):1203―1213. (in Chinese)
[16]  谢芝蕾, 贾海涛. 石灰岩细观力学特性的颗粒流模拟[J]. 岩土力学, 2010, 31(增刊2): 390―396.
[17]  Xu Jinming, Xie Zhilei, Jia Haitao. Simulation of mesomechanical properties of limestone using particle flow code [J]. Rock and Soil Mechanics, 2010, 31(Suppl 2): 390―396. (in Chinese)
[18]  缪协兴, 陈占清, 等. 承压破碎岩石非Darcy渗流的渗透特性试验研究[J]. 工程力学, 2008, 25(4): 85―92.
[19]  Li Shuncai, Miao Xiexing, Chen Zhanqing, et al. Experimental study on seepage properties of non-Darcy flow in confined broken rocks [J]. Engineering Mechanics, 2008, 25(4): 85―92. (in Chinese)
[20]  V, Patrick B, Wong T F. Permeability evolution during localized deformation in Bentheim sandstone [J]. Journal of Geophysical Research, 2004, 109(B10): 406―420.
[21]  陈建生, 陈亮. 孔隙流动数值模拟建模方法及孔隙流速分布规律[J]. 岩土工程学报, 2011, 33(7): 1104―1110.
[22]  Liang Yue, Chen Jiansheng, Chen Liang. Numerical simulation model for pore flows and distribution of their velocity [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104―1110. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133