全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于梁理论的复杂梁式结构低阶频率快速求解方法

DOI: 10.6052/j.issn.1000-4750.2013.03.0174, PP. 1-8

Keywords: 梁式结构,平截面假设,位移插值函数,降阶模型,Krylov子空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

工程计算中常遇到纵向尺度显著大于横向的复杂梁式结构,基于此类大型复杂结构的精细有限元模型建立一个能够预测结构动力性能、实现复杂结构的快速动力分析和优化的近似降阶模型,成为这类结构设计工作者一直关心的问题。该文提出一种基于梁平截面假设和梁位移插值函数的动力模型降阶方法,建立了具有明确物理意义的降阶模型。利用降阶模型计算得到的模态向量是原结构特征向量的高精度近似,基于一次瑞利-里茨逆迭代获得了原结构高精度的低阶频率,并且与Krylov子空间法进行了对比。具体算例表明了降阶方法的有效性。

References

[1]  徐胜利, 程耿东. 基于简化模型的结构动力特性优化[J]. 工程力学, 2011, 28(12): 45―50, 159.
[2]  Wang Wensheng, Xu Shengli, Cheng Gengdong. Optimization of structural dynamic characteristics based on the reduced model [J]. Engineering Mechanics, 2011,28(12): 45―50, 159. (in Chinese)
[3]  Wensheng, Cheng Gengdong, Li Quhao. Fast dynamic performance optimization of complicated beam-type structures based on two new reduced physical models [J]. Engineering Optimization, 2013, 45(7): 835―850.
[4]  W J, Stander N, Haftka R T. Response surface approximations for structural optimization [J]. International Journal of Numerical Methods in Engineering, 1998, 42(3): 517―534.
[5]  李正良, 范文亮. 基于单变量分析的自适应响应面法[J]. 工程力学, 2012, 29(12): 88―94.
[6]  Han Feng, Li Zhengliang, Fan Wenliang. A new adaptive response surface method based on univariate analysis [J]. Engineering Mechanics, 2012, 29(12): 88―94. (in Chinese)
[7]  A A, Watson L T, Koehler J. A comparison of approximation modeling techniques: Polynomial versus interpolating models [J]. AIAA Journal, 1998: 98―4758.
[8]  王希诚. 基于 Kriging 代理模型的多点加点序列优化方法[J]. 工程力学, 2012, 29(4): 90―95.
[9]  Gao Yuehua, Wang Xicheng. A sequential optimization method with multi-point sampling criterion based on Kriging surrogate model [J]. Engineering Mechanics, 2012, 29(4): 90―95. (in Chinese)
[10]  杨海天. 基于 Kriging 代理模型的拉压不同模量平面问题的近似求解[J]. 工程力学, 2013, 30(4): 23―27.
[11]  Zhang Guoqing, Yang Haitian. An approximate solution for the bimodular plane problem based on Kriging surrogate model [J]. Engineering Mechanics, 2013, 30(4): 23―27. (in Chinese)
[12]  C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273―297.
[13]  杨自春. 结构非概率可靠性分析的支持向量机分类方法[J]. 工程力学, 2012, 29(4): 150―154.
[14]  Sun Wencai, Yang Zichun. Support vector classification for structural non-probabilistic reliability analysis [J]. Engineering Mechanics, 2012, 29(4): 150―154. (in Chinese)
[15]  R J. Reduction of stiffness and mass matrices [J]. AIAA Journal, 1965, 3(2): 680.
[16]  E J, Stahle C V. Dynamic transformation method for modal synthesis [J]. AIAA Journal, 1974, 12(5): 672―678.
[17]  有限单元法[M]. 北京: 清华大学出版社, 2004: 468―522.
[18]  Wang Xucheng. Finite element method [M]. Beijing: Tsinghua Press, 2004: 468―522. (in Chinese)
[19]  曲乃泗, 孙焕纯. 计算结构动力学[M]. 北京: 高等教育出版社, 1989: 237―307.
[20]  Lin Jiahao,Qu Naisi,Sun Huanchun. Computational Dynamics of Structure [M]. Beijing: Advanced Education Press, 1989: 237―307. (in Chinese)
[21]  王旭, 邢誉峰, 等. 基于梁模型的火箭纵横扭一体化建模技术[J]. 宇航学报, 2010, 31(5): 1310―1316.
[22]  Pan Zhongwen, Wang Xu, Xing Yufeng, et al. A beam model based longitudinal-lateral-torsional integrated modeling technique for launch vehicle [J]. Journal of Astronautics, 2010, 31(5): 1310―1316. (in Chinese)
[23]  赵德有. 大型及超大型油船总体振动分析方法研究[J]. 大连理工大学学报, 1997, 37(4): 454―458.
[24]  Lin Zhe, Zhao Deyou. Study of hull vibration for large tanker [J]. Journal of Dalian University of Technology, 1997, 37(4): 454―458. (in Chinese)
[25]  巨建民. 轨道车辆车体刚度计算方法的研究[J]. 应用技术, 2010, 197(6): 69―72.
[26]  Zhang Guoqing, Ju Jianmin. Research on numerical method of bodies rigidity of rail car [J]. Applied Technology, 2010, 197(6): 69―72. (in Chinese)
[27]  蔡文安. 材料力学[M]. 上海: 同济大学出版社, 1998: 246―300.
[28]  Song Zikang, Cai Wenan. Mechanics of Materials [M]. Shanghai: Tongji Press, 1998: 246―300. (in Chinese)
[29]  程耿东, 李取浩. 基于梁平截面假设的复杂细长结构动力模型简化方法[J]. 计算力学学报, 2012, 29(3): 295―299, 332.
[30]  Wang Wensheng, Cheng Gengdong, Li Quhao. A model reduction method for dynamics analysis of complex slender structure based on the plane cross-section assumption of beam [J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 295―299, 332. (in Chinese)
[31]  向树红, 张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009: 210―215.
[32]  Qiu Jibao, Xiang Shuhong, Zhang Zhengping. Computational Structural Synamics [M]. Hefei: China Science and Technology University Press, 2009: 210―215. (in Chinese)
[33]  程耿东. 基于局部插值的结构动力模型降阶方法[J]. 力学学报, 2012, 42(2): 342―350.
[34]  Deng Jiadong, Cheng Gengdong. Structure dynamic model reduction technique based on local interploation[J]. Chinese journal of Theoretical and Applied Mechanics, 2012, 42(2): 342―350. (in Chinese)
[35]  R W. Model reduction methods based on Krylov subspaces [J]. Acta Numerica, 2003, 12: 267―319.
[36]  Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J]. Applied Numerical Mathematics, 2002, 43(1/2): 9―44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133