全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于网格/无网格的三维超音速流场数值模拟

DOI: 10.6052/j.issn.1000-4750.2013.06.0558

Keywords: 复杂外形,超音速,笛卡尔网格,无网格法,耦合关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文针对绕三维复杂外形流动的数值模拟,提出了一套基于笛卡尔网格/无网格的混合算法。该算法采用计算效率高的笛卡尔网格覆盖全场,而在计算物体表面及周围邻近区域布置无网格离散点。通过对重叠区域的划分和信息传递,建立各计算区域之间的耦合关系,形成完整的计算系统。为验证混合算法数值模拟的适用性和准确性,该文对超音速圆球绕流进行了计算,将激波的位置、形状与理论分析结果进行了对比。并进一步采用该算法对Ma=2.5、0°~10°攻角下的B1AC2R标准导弹模型进行了计算,获得的气动力系数与实验值基本吻合,表明该文提出的方法可以进行实际工程应用。

References

[1]  张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用[J]. 计算力学学报, 2003, 20(6): 730―742. Zhang Xiong, Song Kangzu, Lu Mingwan. Research progress and application of meshless method [J]. Chinese Journal of Computational Mechanics, 2003, 20(6): 730―742. (in Chinese)
[2]  Lerat A, Wu Z N. Stable conservative multidomain treatments for implicit Euler solvers [J]. Journal of Computational Physics, 1996, 123(1): 45―64.
[3]  史宝军, 袁明武, 宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17―21. Shi Baojun, Yuan Mingwu, Song Shijun. Least-square point collocated meshless method based on kernel reproducing for hydrodynamic problems [J]. Engineering Mechanics, 2006, 23(4): 17―21. (in Chinese)
[4]  Batina J. A gridless Euler/Navier-Stokes solution algorithm for complex two-dimensional application [R]. Hampton, VA, USA. NASA (National Aeronautics and Space Administration), 1993: 333―341.
[5]  Sridar S, Balakrishnan N. An upwind finite difference scheme for meshless method [J]. Journal of Computational Physics, 2003, 189(1): 1―29.
[6]  Katz A. Meshless methods for computational fluid dynamics [D]. Ann Arbor, Michigan: ProQuest, UMI Dissertation Publishing, 2009.
[7]  蔡晓伟, 谭俊杰, 王园丁, 等. 两种k-ω型湍流模型在无网格方法中的应用研究[J]. 空气动力学学报, 2014, 32(5): 273―279. Cai Xiaowei, Tan Junjie, Wang Yuanding, et al. Application and analysis of two k-ω type turbulence models in meshless method [J]. Acta Aerodynamic Sinica, 2014, 32(5): 273―279. (in Chinese)
[8]  Ortega E, Onate E, Idelsohn S. A finite point method for adaptive three-dimensional compressible flow calculations [J]. International Journal for Numerical Methods in Fluids, 2009, 60(9): 937―971.
[9]  Kirshman D J, Liu F. A gridless boundary condition method for the solution of the Euler equations on embedded Cartesian meshes with multigrid [J]. Journal of Computational Physics, 2004, 201(1): 119―147.
[10]  Cai X W, Tan J J, Ma X J, et al. Application of hybrid Cartesian grid and gridless approach to moving boundary flow problems [J]. International Journal for Numerical Methods in Fluids, 2013, 72(9): 994―1013.
[11]  Liou M S, Christopher J, Steffen J. A new flux splitting scheme [J]. Journal of Computational Physics, 1993, 107(1): 23―39.
[12]  Liou M S. A sequel to AUSM, PartⅡ: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214(1): 137―170.
[13]  Chesshire G, Henshaw W D. Composite overlapping meshes for the solution of partial differential equations [J]. Journal of Computational Physics, 1990, 90(1): 1―64.
[14]  Berger M J. On conservation at grid interfaces [J]. SIAM Journal on Numerical Analysis, 1986, 24(5): 96―984.
[15]  Billig F S. Shock-wave shapes around spherical- and cylindrical-nosed bodies [J]. Journal of Spacecraft and Rockets, 1967, 4(6): 822―823.
[16]  Despirito J. Base pressure computations of the DERA generic missile wind tunnel model [R]. Maryland, USA, Army Research Laboratory, 2005: 1―21.
[17]  Despirito J, Edge H L, Weinacht P, et al. Computational fluid dynamic (CFD) analysis of a generic missile with grid fins [J]. Journal of Spacecraft and Rockets, 2001, 38(5): 711―718.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133