全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于有限元法的模糊参数二维声场数值分析

DOI: 10.6052/j.issn.1000-4750.2013.06.0581, PP. 200-207

Keywords: 不确定性,模糊参数,摄动有限元法,二维声场,声压预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了分析不确定性二维声场,引入模糊集概念描述声场的物理参数、载荷和边界条件的不确定性,推导了分析模糊参数下二维声场问题的相关计算公式。在不同隶属度的截集下通过对模糊动刚度矩阵和模糊载荷矩阵进行泰勒展开,再用纽曼展开对模糊动刚度矩阵泰勒展开式的逆进行转化,采用摄动有限元法求解,最终得到模糊参数下的声压解集。以二维管道声场模型和某轿车二维声腔模型为研究对象分析了模糊参数下的声压响应,结果表明该文方法能有效分析模糊参数下的二维声场,具有重要的工程应用价值。

References

[1]  吴定俊, 李奇. 城市轨道交通槽型梁结构噪声计算与分析[J]. 工程力学, 2013, 30(2): 190―195. Han Jianglong, Wu Dingjun, Li Qi. Calculation and analysis of structure-borne noise from urban rail transit trough girders [J]. Engineering Mechanics, 2013, 30(2): 190―195. (in Chinese)
[2]  Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation [J]. Computers and Structures, 2000, 77(6): 651―657.
[3]  王东升, 朱长春. 随机结构在随机载荷下的动力可靠度分析[J]. 工程力学, 2006, 23(10): 82―85.[3] Chen Ying, Wang Dongsheng, Zhu Changchun. Dynamic reliability analysis of stochastic structures subjected to random loads [J]. Engineering Mechanics, 2006, 23(10): 82―85. (in Chinese)
[4]  M. Statistically equivalent solutions of stochastic mechanics problems [J]. ASCE Journal of Engineering Mechanics, 1991, 117(8): 1906―1918.
[5]  L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338―353.
[6]  Hongzhong, Li Haibin. Perturbation finite element method of structural analysis under fuzzy environments [J]. Engineering Applications of Artificial Intelligence, 2005, 18: 83―91.
[7]  L, Moens D, Vandepitte D, Desmet W. Fuzzy finite element analysis based on reanalysis technique [J]. Structural Safety, 2010, 32: 442―448.
[8]  D, Vandepitte D. A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures:Part 1–Procedure [J]. Journal of Sound and Vibration, 2005, 288: 431―462.
[9]  Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain- but-non random parameters [J]. Chaos Soliton and Fractral, 1996, 7(3): 425―434.
[10]  K R, Dowling D R. A probability density function method for acoustic field uncertainty analysis [J]. Journal of the Acoustical Society of America, 2005, 118(5): 2802―2810.
[11]  K R, Dowling D R. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties [J]. Journal of the Acoustical Society of America, 2008, 124(3): 1465―1476.
[12]  K R, Dowling D R. Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L)a [J]. Journal of the Acoustical Society of America, 2011, 129(2): 589―592.
[13]  Y Y, Creamer D B, Finette S. Acoustic propagation in an uncertain waveguide environment using stochastic basis expansions [J]. Journal of Computational Acoustics, 2010, 18(4): 397―441.
[14]  J, Finette S. Stochastic basis expansions applied to acoustic propagation in an uncertain, range, and depth-dependent, multi-layered waveguide [J]. Journal of the Acoustical Society of America, 2011, 129(4): 2600.
[15]  S. A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment [J]. Journal of the Acoustical Society of America, 2009, 126(5): 2242―2247.
[16]  Baizhan, Yu Dejie. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters [J]. Journal of Sound and Vibration, 2012, 331: 3774―3790
[17]  L F, Li Q S, Leung A Y T, Zhao Y L, Li G Q. Fuzzy variational principle and its applications [J]. European Journal of Mechanics A/Solids, 2002, 21: 999―1018.
[18]  F, Babuška I. Finite element solution of the Helmholtz equation with high wave number part І: The h-version of the FEM [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 38(9): 9―37.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133