全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于动力显式算法的热成形数值模拟预测

DOI: 10.6052/j.issn.1000-4750.2013.06.0566, PP. 186-192

Keywords: 热成形,微观组织预测,本构方程,动力显式算法,KMAS,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑金属热处理相变动力学模型,建立了适用于高强度钢板热成形的热、力、相变多场耦合本构方程。基于大变形动力显式有限元算法及上述多场耦合本构方程,建立了热成形动力显式有限元方程。并将板料相变潜热释放引入到热成形温度场分析过程中。在自主开发的商业化金属成形CAE软件KMAS(KingMeshAnalysisSystem)基础上开发了热成形动力显式分析模块,可用于预测热成形过程中零件的厚度变化、温度变化、微观组织各相的体积分数以及硬度分布。随后采用该模块对一款汽车B柱的热成形过程及最终力学性能进行数值模拟预测,并与试验结果进行对比,对比的一致性证明了所建立的多场耦合本构方程及KMAS热成形动力显式分析模块的正确性。

References

[1]  H, Tekkaya A E. A review on hot stamping [J]. Journal of Materials Processing Technology, 2010, 210(15): 2103―2118.
[2]  M, Uthaisangsuk V, Prahl U, et al. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels [J]. Steel Research International, 2008, 79(2): 77―84.
[3]  Z W, Bao J, Yang Y Y. Numerical simulation of hot stamping of quenchable boron steel [J]. Materials Science and Engineering: A, 2009, 499(1): 28―31.
[4]  马鸣图, 张宜生, 等. 汽车前防撞梁的热冲压成形数值模拟与试验[J]. 锻压技术, 2013, 38(3): 46―50. Guo Yihui, Ma Mingtu, Zhang Yisheng, et al. Numerical simulation and experiment of hot stamping for front bumper of automobile [J]. Forging and Stamping Technology, 2013, 38(3): 46―50. (in Chinese)
[5]  包军, 邢忠文, 等. 高强钢板热冲压成形热力耦合数值模拟[J]. 材料科学与工艺, 2010, 18(4): 459―463. Liu Hongsheng, Bao Jun, Xing Zhongwen, et al. Numerical simulation on channel shape hot stamping of 22MnB5 high-strength sheet metal based on thermo-mechanical coupled method [J]. Materials Science and Technology, 2010, 18(4): 459―463. (in Chinese)
[6]  汽车超高强度硼钢板热成形工艺研究[D]. 上海: 同济大学, 2007. Zhou Quan. Study on the hot stamping process of high strength steel blanks [D]. Shanghai: Tongji University, 2007. (in Chinese)
[7]  武文华, 胡平. 高强度钢板热成形温度场数值模拟分析[J]. 工程力学, 2013, 30(1): 419―424. Jiang Daxin, Wu Wenhua, Hu Ping. Research on temperature numerical simulation of hot stamping process of high strength steel [J]. Engineering Mechanics, 2013, 30(1):419―424. (in Chinese)
[8]  T, Kojima N. Effect of quenching rate on hardness and microstructure of hot-stamped steel [J]. Tetsu To Hagane-Journal of the Iron and Steel Institute of Japan, 2010, 96(6): 378―385.
[9]  M. Kinetics of phase change. I General theory [J]. The Journal of Chemical Physics, 1939, 7(12): 1103―1112.
[10]  J S, Venugopalan D. Prediction of microstructure and hardenability in low-alloy steels [J]. Phase Transformations in Ferrous Alloys, 1983, 34(2): 125―148.
[11]  M V, Niebuhr D V, Meekisho L L, et al. A computational model for the prediction of steel hardenability [J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661―672.
[12]  D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metallurgica, 1959, 7(1): 59―60.
[13]  P, Jungmann B, Dollet J. Creusot-loire system for the prediction of the mechanical properties of low alloy steel products, hardenability concepts with applications to steel [J]. Metallurgical Society of AIME, 1977, 11(4): 518―545.
[14]  C H, Tekkaya A E. Finite element simulation of quench hardening [J]. Steel Research, 1996, 67(7): 298―306.
[15]  Y, Brimacombe J K, Hawbolt E B, et al. Mathematical model of phase transformations and elastoplastic stress in the water spray quenching of steel bars [J]. Metallurgical Transactions A, 1993, 24(4): 795―808.
[16]  S. The calculation of quench stresses in steel [M]. Linkoping Sweden: Linkoping Studies in Science and Technology, 1982: 15―18.
[17]  A B. Using LS-Dyna for hot stamping [C]. Salzburg Austria: The Seventh European LS-Dyna Conference, 2009: 1―9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133