全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于并层单元的大体积混凝土水管冷却温度场热-流耦合精细计算

DOI: 10.6052/j.issn.1000-4750.2013.08.0779, PP. 147-154

Keywords: 大体积混凝土,温度场,热-流耦合算法,水管冷却,并层单元

Full-Text   Cite this paper   Add to My Lib

Abstract:

热-流耦合精细算法能准确反映冷却水管附近温度梯度,从而精确计算大体积混凝土水管冷却温度场,然而该方法在有限元计算中存在前处理规模大、计算效率低的缺点;依据混凝土的热力学参数随龄期变化特性和混凝土水管冷却温度场分布规律,开发了一整套热-流耦合精细计算的前、后处理程序,在计算过程中依据龄期特性对混凝土单元不断进行并层处理,从而实现了大体积混凝土水管冷却温度场整体-局部一致模型的快速建立和高效精确数值模拟。数值计算算例表明该方法能在保证计算精度的同时,极大地降低有限元计算过程中的单元规模,有效地节约了计算时间,提高了计算效率,使得大体积混凝土温度场全过程精细数值仿真得以实现。

References

[1]  苏海东. 大体积混凝土结构仿真应力分析快速算法及应用[J]. 长江科学院院报, 2003, 20(6): 19―22.[1] Lin Shaozhong, Su Haidong. Fast algorithms for stress analysis simulating construction process of massive concrete structures and applications [J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(6): 19―22. (in Chinese)
[2]  T G, Fowkes N D, Ballim Y. Modeling the cooling of concrete by piped water [J]. Journal of Engineering Mechanics, 2009, 135(12): 1375―1383.
[3]  J K, Kim K H, Yang J K. Thermal analysis of hydration heat in concrete structures with pipe-cooling system [J]. Computers & Structures, 2001, 79(2): 163―171.
[4]  Xinghong, Duan Yin, Zhou Wei, et al. Modeling the piped water cooling of a concrete dam using the heat-fluid coupling method [J]. Journal of Engineering Mechanics, 2013, 139(9): 1278―1289.
[5]  混凝土坝水管冷却仿真计算的复合算法[J]. 水利水电技术, 2003, 34(11): 47―50.[5] Zhu Bofang. Compound methods for computing the effect of pipe cooling in concrete dam [J]. Water Resources and Hydropower Engineering, 2003, 34(11): 47―50. (in Chinese).
[6]  刘光廷. 水管冷却效应的有限元子结构模拟技术[J]. 水利学报, 1997, 12: 43―49.[6] Liu Ning, Liu Guangting. Sub-structural FEM for the thermal effect of cooling pipes in mass concrete structures [J]. Journal of Hydraulic engineering, 1997, 12: 43―49. (in Chinese)
[7]  陈胜宏, 田甜. 混凝土水管冷却的复合单元算法[J]. 武汉理工大学学报, 2010, 24(32): 49―53.[7] Su Peifang, Chen Shenghong, Tian Tian. Preliminary research on composite element algorithm for the concrete containing cooling pipes [J]. Journal of Wuhan University of Technology, 2010, 24(32): 49―53. (in Chinese)
[8]  马刚, 常晓林, 周伟. 基于热-流耦合精细算法的大体积混凝土水管冷却数值模拟[J]. 工程力学, 2012, 29(8): 159―164.[8] Liu Xinghong, Ma Gang, Chang Xiaolin, Zhou Wei. The refined numerical simulation of pipe cooling in mass concrete based on heat-fluid coupling method. Engineering Mechanics, 2012, 29(8): 159―164. (in Chinese)
[9]  F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type [J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3―22.
[10]  X, Li S, Chen Y, et al. The development and verification of relocating mesh method for the computation of temperature field of RCC dam [J]. Advances in Engineering Software, 2009, 40(11): 1119―1123.
[11]  向正林, 常晓林, 刘杏红. 大体积混凝土水管冷却热流耦合算法与等效算法对比分析[J]. 武汉大学学报工学版, 2010, 43(6): 703―707.[11] Duan Yin, Xiang Zhenglin, Chang Xiaolin, Liu Xinghong. Comparative analysis of pipe cooling in mass concrete using thermal fluid coupling method and equivalent method based on FEM [J]. Engineering Journal of Wuhan University, 2010, 43(6): 703―707. (in Chinese).
[12]  顾元宪. 瞬态热传导方程的子结构精细积分方法[J]. 应用力学学报, 2001, 18(1): 14―18.[12] Chen Biaosong, Gu Yuanxian. Substructures precise time integration method for transient heat conduction [J]. Chinese Journal of Applied Mechanics, 2001, 18(1): 14―18. (in Chinese)
[13]  Bofang. Current situation and prospect of temperature control and cracking prevention technology for concrete dam [J]. Journal of Hydraulic Engineering, 2006, 37(12): 1424―1432.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133