全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

一种基于小变形协调方程的动不定体系精确求解方法

DOI: 10.6052/j.issn.1000-4750.2013.07.0622, PP. 126-133

Keywords: 动不定体系,机构,协调方程,奇异值分解,运动路径,预测位移,补偿位移

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于动不定体系,在荷载作用下往往会经历含有大变位的机构运动,最终到达一个满足受荷不可动判别准则的构型。该文在小变形假设的基础上提出了一种基于体系协调矩阵奇异值分解的动不定体系求解思路,通过在一个计算步内体系的初始构型和临时构型分别建立协调方程,求得相应的预测位移和补偿位移,从而获得每步的真实位移值,实现运动路径的跟踪。经过若干计算步到达受荷不可动的构型后,再进行静力计算,以得到体系的最终平衡状态。算例表明,采用该文的方法,可以在避免迭代的前提下快速、准确地求得体系的最终受力状态。

References

[1]  S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26(12): 1329―1350.
[2]  S. Structural computations with the singular value decomposition of the equilibrium matrix [J]. International Journal of Solids and Structures, 1993, 30(21): 3025―3035.
[3]  S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1986, 22(4): 409―428.
[4]  动不定结构的平衡矩阵分析方法与理论研究[D]. 杭州: 浙江大学, 2008.[4] Lu Jinyu. Research on equilibrium matrix analysis theory of kinematically indeterminate structures [D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[5]  H C, Lee J. Advanced form-finding of tensegrity structures [J]. Computers & Structures, 2010, 88(3): 237―246.
[6]  邓华. 基于弧长法的平面连杆机构运动分析[J]. 浙江大学学报(工学版), 2011, 45(12): 2159―2168.[6] Zu Yizhen, Deng Hua. Kinematic analysis of planar pin-bar linkages by arc-length method [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(12): 2159―2168. (in Chinese)
[7]  P, Pellegrino S. Computation of kinematic paths and bifurcation points [J]. International Journal of Solids and Structures, 2000, 37(46): 7003―7027.
[8]  H, Kwan A S K. Unified classification of stability of pin-jointed bar assemblies [J]. International Journal of Solids and Structures, 2005, 42(15): 4393―4413.
[9]  T, Szabó J. On the exact equation of inextensional, kinematically indeterminate assemblies [J]. Computers & Structures, 2000, 75(2): 145―155.
[10]  袁行飞, 董石麟, 等. 基于大变形分析的动不定体系的求解[J]. 计算力学学报, 2008, 25(3): 310―314.[10] Zheng Junhua, Yuan Xingfei, Dong Shilin, et al. Calculation of kinematically indeterminate system based on large deformation analysis [J]. China Journal of Computational Mechanics, 2008, 25(3): 310―314. (in Chinese)
[11]  楼俊晖, 徐静. 铰接杆系机构的运动路径及其极值点跟踪-一种几何学方法[J]. 工程力学, 2009, 26(10): 30―36.[11] Deng Hua, Lou Junhui, Xu Jing. Tracing kinematic paths and limit points of pin-bar mechanisms by a geometrical approach [J]. Engineering Mechanics, 2009, 26(10): 30―36. (in Chinese)
[12]  陆金钰. 杆系结构可动性判定准则[J]. 工程力学, 2006, 23(11): 70―74.[12] Luo Yaozhi, Lu Jinyu. New criteria for the mobility of 3-D bar structure [J]. Engineering Mechanics, 2006, 23(11): 70―74. (in Chinese)
[13]  Y, Feng J, Wu Y. Prestress stability of pin-jointed assemblies using ant colony systems [J]. Mechanics Research Communications, 2012, 41: 30―36.
[14]  Y, Lu J. Geometrically non-linear force method for assemblies with infinitesimal mechanisms [J]. Computers & Structures, 2006, 84(31): 2194―2199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133