全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于ICM方法的层合板结构流固耦合频率约束拓扑优化

DOI: 10.6052/j.issn.1000-4750.2014.03.0148, PP. 228-235

Keywords: 拓扑优化,流固耦合,层合板,ICM方法,二次开发

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文基于独立、连续、映射(independentcontinuousmapping,ICM)的拓扑优化方法,针对层合板结构频率约束下流固耦合的拓扑优化问题进行了建模与求解。利用格林公式与瑞利商,进行了优化模型频率约束的显式化,并基于泰勒线性近似的方法推导了设计灵敏公式,同时采用对偶序列二次规划求解了该模型。另外,通过引入修正的Heaviside函数对拓扑变量进行了离散化处理。利用PCL(PatranCommandLanguage)二次开发平台对现有MSC.Patran软件进行二次开发,并通过MSC.Nastran软件求解器,实现了优化算法。数值算例证明了该文程序与算法的有效性与可行性。

References

[1]  邱海, 隋允康, 叶红玲. 频率约束板结构拓扑优化[J]. 固体力学学报, 2012, 33(2): 189―198. Qiu Hai, Sui Yunkang, Ye Hongling. Topological optimization of the plate structure subjected to the frequency constraints Acta mechanica solida sinica, 2012, 33(2): 189―198. (in Chinese)
[2]  佀晓辉, 卢文秀, 褚福磊. 带有边缘径向裂纹的固支圆板湿模态分析[J]. 振动工程学报, 2011, 24(6): 595―599. Si Xiaohui, Lu Wenxiu, Chu Fulei. Wetmode analysis of completely clamped circular plate with a side radial crack [J]. Journal of vibration engineering, 2011, 24(6): 595―599. (in Chinese)
[3]  Amabili M. Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom [J]. Journal of Sound and Vibration, 1998, 213(2): 259―299.
[4]  Zhou Ding, Liu Weiqing. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross- section [J]. Applied Mathematical Modeling, 2007, 31(10): 2249―2265.
[5]  Sigmund O, Maute K. Sensitivity filtering from a continuum mechanics perspective [J]. Structural and Multidisciplinary Optimization. 2012, 46(4): 471―475.
[6]  Guest J K, Prevost J H, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions [J]. International Journal for Numerical Methods in Engineering, 2004, 61(2): 238―254.
[7]  Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(1): 197―224.
[8]  Mlejnek H P, Schirrmacher R. An engineer's approach to optimal distribution and shape finding [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 106(1/2): 1―26.
[9]  Xie Y M, Steven G P. Evolutionary structural optimization [M]. Berlin: Springer-Verlag, 1997: 77―103.
[10]  Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000, 163(2): 489―528.
[11]  隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京: 科学工业出版社, 2013: 133―196. Sui Yunkang, Ye Hongling. Continuum topology optimization methods ICM [M]. Beijing: Science Press, 2013: 133―196. (in Chinese)
[12]  Pedersen N L. Maximization of eigenvalues using topology optimization [J]. Structural and Multidisciplinary Optimization, 2000, 20(1): 2―11.
[13]  Jianbin D, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps [J]. Structural and Multidisciplinary Optimization. 2007, 34(2): 91―110.
[14]  杨振兴, 荣见华, 傅建林. 三维结构的频率拓扑优化设计[J]. 振动与冲击, 2006, 25(3): 44―47. Yang Zhengxing, Rong Jianhua, Fu Jianlin. Frequency topology optimal design of three-dimensional structures [J]. Journal of Vibration and Shock, 2006, 25(3): 44―47 (in Chinese).
[15]  薛开, 雷寰兴, 王威远. 一种新的周长约束方法在阻尼频率拓扑优化中的应用[J]. 工程力学, 2013, 30(6): 275―280. Xue Kai, Lei Huanxing, Wang Weiyuan. An application of a new perimeter constraint method in topology optimization for damped frequency [J]. Engineering Mechanics, 2013, 30(6): 275―280. (in Chinese)
[16]  叶红玲, 沈静娴, 隋允康. 频率约束的三维连续体结构动力拓扑优化设计[J]. 力学学报, 2012, 44(6): 1037―1045. Ye Hongling, Shen Jingxian, Sui Yunkang, Dynamic to logical optimal design of three-dimensional continuum structures with frequencies constraints [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037―1045. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133