全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于扩展有限元进行钢筋混凝土柱捏拢效应的机理分析

DOI: 10.6052/j.issn.1000-4750.2014.04.0303, PP. 170-179

Keywords: 扩展有限元法,滞回模型,裂缝行为,粘结滑移,捏拢效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

预测地震荷载下钢筋混凝土柱的力学性能,对评估震后混凝土结构的安全性和震害损失具有重要意义。由于混凝土材料在受力过程中的复杂性,目前对钢筋混凝土结构力学性能的模拟主要依靠数值方法。已有的数值模拟方法大都基于有限元法,将混凝土视为连续体,通过人为定义参数来指定混凝土的滞回本构,因此存在一定的主观性与局限性。该文结合扩展有限元法与断裂准则,直接模拟混凝土裂缝的开展与闭合,并考虑钢筋和混凝土的粘结滑移作用,通过数值计算,直接再现了钢筋混凝土结构在低周反复荷载下的力学行为。模拟方法得到了试验的验证,与结果吻合较好。该文进一步分析了钢筋混凝土柱的滞回行为中混凝土、钢筋的各自作用和相互抵消行为,从细观的角度,在机理上揭示了捏拢效应出现的三个主要原因。

References

[1]  汪训流, 陆新征, 叶列平. 往复荷载下钢筋混凝土柱受力性能的数值模拟[J]. 工程力学, 2007, 24(12): 76―81. Wang Xunliu, Lu Xinzheng, Ye Lieping. Numerical simulation for the hysteresis behavior of rc columns under cyclic loads [J]. Engineering Mechanics, 2007, 24(12): 76―81. (in Chinese)
[2]  赵冠远, 安明结, 季文玉, 王艳. 考虑弹塑性结构退化和捏拢滑移效应的光滑滞回模型[J]. 中国铁道科学, 2011, 32(3): 52―57. Zhao Guanyuan, An Mingjie, Ji Wenyu, Wang Yan. A Smooth Hysteretic Model Considering Degrading and Slip Pinching Effects of Inelastic Structures [J]. China Railway Science, 2011, 32(3): 52―57. (in Chinese)
[3]  程翔云, 邹银生, 在循环荷载作用下钢筋混凝土压弯构件的试验和滞回模型[J]. 湖南大学学报, 1981, 1: 15―28. Cheng Xiangyun, Zou Yinsheng. The experiment and the hysteresis model of reinforced concrete members in combined bending and axial load under cyclic loading [J]. Journal of Hunan University, 1981, 1: 15―28. (in Chinese)
[4]  张虎. 考虑裂缝开闭对钢筋混凝土滞回性能的影响[D]. 重庆: 重庆大学, 2008. Zhang Hu. Effect on hysteretic behavior of reinforced concrete considering crack opening and closure [D]. Chongqing: Chongqing University, 2008. (in Chinese)
[5]  Wen Y K. Method for random vibration of hysteretic systems [J]. ASCE: Journal of Engineering Mechanics Division, 1976, 102(2): 249―263.
[6]  Saiidi M, Sozen M A. Simple nonlinear seismic analysis of r/c structures [J]. ASCE:Journal of Structural Engineering, 1981, 107(5): 937―952.
[7]  Mo Y L, Zhong Jianxia, Thomas T C, Hsu. Seismic simulation of RC wall-type structures [J]. Engineering Structures, 2008, 30(11): 3167―3175.
[8]  Howser R, Laskar A, Mo Y L. Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns [J]. Structural Engineering and Mechanics, 2010, 35(5): 593―616.
[9]  Mansour M Y, Hsu T T C, Mo Y L. Constitutive relations of cracked reinforced concrete with steel fibers [C]. America: American Concrete Institute, 2009(265): 101―121.
[10]  Zhong J X, Mo Y L, Liao W I. Reversed cyclic behavior of reinforced concrete shear walls with diagonal steel grids [C]. America: American Concrete Institute, 2009(265): 47―72.
[11]  Mo Y L, Zhong J X, Hsu, Thomas T C. Seismic simulation of RC wall-type structures [J]. Engineering Structures, 2008, 30(11): 3167―3175.
[12]  聂祺, 唐曹明, 林春哲. 基于纤维梁元模型的钢筋混凝土框架结构弹塑性时程分析[J]. 工业建筑, 2011, 41 (增1): 101―104. Nie Qi, Tang Caoming, Lin Chunzhe. Elasto -plastic time history analysis of reinforced concrete frame structure based on fiber beam model [J]. Industrial Construction. 2011, 41(Suppl 1): 101―104. (in Chinese)
[13]  聂建国, 王宇航. 基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用[J]. 工程力学, 2012, 29(1): 70―80. Nie Jianguo, Wang Yuhang. Development and application of steel-concrete composite fiber beam model in ABAQUS platform [J]. Engineering Mechanics, 2012, 29(1): 70―80. (in Chinese)
[14]  陈适才, 陆新征, 任爱珠, 江见鲸. 基于纤维梁模型的火灾下多层混凝土框架非线性分析[J]. 建筑结构学报, 2009, 30(6): 44―53. Chen Shicai, Lu Xinzheng, Ren Aizhu, Jiang Jianjing. Nonlinear analysis of multi-story concrete frame under fire with fiber beam model [J]. Journal of Building Structures, 2009, 30(6): 44―53. (in Chinese)
[15]  John Dolbow, Nicolas Moes, Ted Belytschko. An extended finite element for modeling crack growth with frictional contact [J]. Computer Methods in Applied Mechanics and Engineering, 2001(190): 6825―6846.
[16]  Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999: 46(1): 131―150.
[17]  Sukumar N, Moes N, Moran B, Belytschko T. Extended finite element method for three-dimensional crack modeling [J]. International Journal for Numerical Methods in Engineering, 2000: 48(11): 1549―1570.
[18]  姜庆远, 叶燕春, 刘宗仁. 弥散裂缝模型的应用探讨[J]. 土木工程学报, 2008, 41(2): 81―85. Jiang Qingyuan, Ye Yanchun, Liu Zongren. Investigation on applying the smeared crack model [J]. China Civil Engineering Journal, 2008, 41(2): 81―85. (in Chinese)
[19]  陈惠发, 萨里普 A F. 弹性与塑性力学[M]. 北京: 中国建筑工业出版社, 2005: 26―32.
[20]  Chen H F, Salip A F. Elasticity and Plasticity [M]. Beijing: China Architecture & Building Press, 2005: 26―32. (in Chinese)
[21]  庄茁, 柳占力, 成斌斌, 廖剑辉, 等. 扩展有限元法[M]. 北京: 清华大学出版社, 2012: 97―105. Zhuang Zhuo, Liu Zhanli, Cheng Binbin, Liao Jianhui, et al. Extended finite element method [M]. Beijing: Tsinghua University Press, 2012: 97―105. (in Chinese)
[22]  Benzeggagh M L, Kenane M. Mixed-Mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading [J]. Composites Science and Technology, 1997(57): 597―605.
[23]  CEB-FIP, Model Code 90 [S]. London, UK: Thomas Telford House, 1993.
[24]  Thomas T C, Hsu. Unified theory of concrete structures [M]. CRC Press, Boca Raton, 1992: 82―85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133