全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

谱元法与透射边界的配合使用及其稳定性研究

DOI: 10.6052/j.issn.1000-4750.2014.03.0196, PP. 40-50

Keywords: 谱元法,有限元法,透射公式,透射边界,数值稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

在无限域波动模拟中引入透射边界条件时,目前多将边界上的透射公式与内域的有限元法结合使用,其计算精度由有限元方法决定,而谱元法因结合有限元和频谱法的优势则比有限元空间域积分具有更高的计算精度。该文基于谱元法非等距网格划分特性,研究了内域的谱元法与边界上的透射公式结合的理论方法,给出了相应的透射公式使用方法,并基于建立的谱元法波动数值模型探讨了透射公式的稳定性问题。研究表明:空间域插值系数需控制在一个合理范围内,空间域插值方法相对于时间域插值方法更为稳定,高频失稳出现可能性相对较小;Gamma算子的使用可提高模拟的精度,采用Gamma算子后对于高阶透射公式仍可出现低频漂移现象,可结合降阶消漂的方式实现稳定精度高的透射边界应用。

References

[1]  Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method [J]. Geophysics, 1986, 51(4): 889―901.
[2]  Fajardo K, Papageorgiou A S. Wave propagation in unbounded elastic domains using the spectral element method: Formulation [J]. Earthquake and Structures, 2012, 3(3/4): 383―411.
[3]  Alterman Z, Karal F. Propagation of elastic waves in layered media by finite difference methods [J]. Bulletin of the Seismological Society of America, 1968, 58(1): 367―398.
[4]  廖振鹏. 工程波动理论导论[M]. 北京: 科学出版社, 2002: 136―277. Liao Zhengpeng. Introduction to Wave Theory Engineering [M]. Beijing: Science Press, 2002: 136―277. (in Chinese)
[5]  Givoli D. High-order local non-reflecting boundary conditions: A review [J]. Wave Motion, 2004, 39(4): 319―326.
[6]  Lysmer J, Kuhlemeyer R. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics- Asce (Journal of the Engineering Mechanics Division), 1969, 95: 859―877.
[7]  Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics, 1994, 120(1): 25―42.
[8]  刘晶波, 王振宁, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46―51. Liu Jingbo, Wang Zhenning, Du Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J]. Engineering Mechanics, 2005, 22(6): 46―51. (in Chinese)
[9]  Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves [J]. Proceedings of the National Academy of Sciences, 1977, 74(5): 1765―1766.
[10]  Clayton R, Engquist. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletin of the Seismological Society of America, 1977, 67(6): 1529―1540.
[11]  廖振鹏, 周正华, 张艳红, 等. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4): 533―545. Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong, et al. Transmitting boundary in numerical simulation of wave motion stability [J]. Chinese Journal of Geophysics, 2002, 45(4): 533―545. (in Chinese)
[12]  李小军, 廖振鹏, 杜修力, 等. 有阻尼体系动力问题的一种显示差分解法[J]. 地震工程与工程振动, 1992, 4(12): 387―392. Li Xiaojun, Liao Zhenpeng, Du Xiuli, et al. A finite difference method for viscoelastic dynamic problems [J]. Earthquake Engineering and Engineering Vibration, 1992, 4(12): 387―392. (in Chinese)
[13]  李小军. 非线性场地地震反应分析方法的研究[D]. 北京: 中国地震局工程力学研究所, 1993. Li Xiaojun. Study on the method for analyzing the earthquake response of nonlinear site [D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 1993. (in Chinese)
[14]  李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳[J]. 力学学报, 1996, 28(5): 627―632. Li Xiaojun, Liao Zhenpeng. Calculate the drift instability of local transmitting boundary in time domain [J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 627―632. (in Chinese)
[15]  周正华, 廖振鹏. 修正算子 的物理含义解释[J]. 地震工程与工程振动, 2005, 24(5): 17―19. Zhou Zhenghua, Liao Zhenpeng. The interpretation of physical implication of modified operator [J]. Earthquake Engineering and Engineering Vibration, 2005, 24(5): 17―19. (in Chinese)
[16]  Higdon R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation [J]. Matherntics of Computation, 1986, 47(176): 437―459.
[17]  Higdon R L. Numerical absorbing boundary conditions for the wave equation [J]. Matherntics of Computation, 1987, 49(179): 65―90.
[18]  Higdon R L. Absorbing boundary conditions for acoustic and elastic waves in stratified media [J]. Journal of Computational Physics, 1992, 101(2): 386―418.
[19]  Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185―200.
[20]  Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates [J]. Microwave and Optical Technology Letters, 1994, 7(13): 599―604.
[21]  Taflove A, Hagness S C. Computational electrodynamics: The FDTD Method [M]. London: Artech House Boston, 2000.
[22]  Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation [J]. Geophysics, 2007, 72(5): SM155―SM167.
[23]  Meza-Fajardo K C, Papageorgiou A S. A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis [J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1811― 1836.
[24]  Malvern L E. Introduction to the Mechanics of a Continuous Medium [M]. Englewood, New Jersey: Prentice-Hall, Inc., 1969.
[25]  Mooney H M. Some numerical solutions for Lamb’s problem [J]. Bulletin of the Seismological Society of America, 1974, 64(2): 473―491.
[26]  孙虎, 周丽. 基于谱元法的裂纹梁Lamb波传播特性研究[J]. 工程力学, 2012, 29(9): 50―55. Sui Hu, Zhou Li. Lamb wave propagation in a cracked beam using spectral finite element method [J]. Engineering Mechanics, 2012, 29(9): 50―55. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133