Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method [J]. Geophysics, 1986, 51(4): 889―901.
[2]
Fajardo K, Papageorgiou A S. Wave propagation in unbounded elastic domains using the spectral element method: Formulation [J]. Earthquake and Structures, 2012, 3(3/4): 383―411.
[3]
Alterman Z, Karal F. Propagation of elastic waves in layered media by finite difference methods [J]. Bulletin of the Seismological Society of America, 1968, 58(1): 367―398.
[4]
廖振鹏. 工程波动理论导论[M]. 北京: 科学出版社, 2002: 136―277. Liao Zhengpeng. Introduction to Wave Theory Engineering [M]. Beijing: Science Press, 2002: 136―277. (in Chinese)
[5]
Givoli D. High-order local non-reflecting boundary conditions: A review [J]. Wave Motion, 2004, 39(4): 319―326.
[6]
Lysmer J, Kuhlemeyer R. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics- Asce (Journal of the Engineering Mechanics Division), 1969, 95: 859―877.
[7]
Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics, 1994, 120(1): 25―42.
[8]
刘晶波, 王振宁, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46―51. Liu Jingbo, Wang Zhenning, Du Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J]. Engineering Mechanics, 2005, 22(6): 46―51. (in Chinese)
[9]
Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves [J]. Proceedings of the National Academy of Sciences, 1977, 74(5): 1765―1766.
[10]
Clayton R, Engquist. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletin of the Seismological Society of America, 1977, 67(6): 1529―1540.
[11]
廖振鹏, 周正华, 张艳红, 等. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4): 533―545. Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong, et al. Transmitting boundary in numerical simulation of wave motion stability [J]. Chinese Journal of Geophysics, 2002, 45(4): 533―545. (in Chinese)
[12]
李小军, 廖振鹏, 杜修力, 等. 有阻尼体系动力问题的一种显示差分解法[J]. 地震工程与工程振动, 1992, 4(12): 387―392. Li Xiaojun, Liao Zhenpeng, Du Xiuli, et al. A finite difference method for viscoelastic dynamic problems [J]. Earthquake Engineering and Engineering Vibration, 1992, 4(12): 387―392. (in Chinese)
[13]
李小军. 非线性场地地震反应分析方法的研究[D]. 北京: 中国地震局工程力学研究所, 1993. Li Xiaojun. Study on the method for analyzing the earthquake response of nonlinear site [D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 1993. (in Chinese)
[14]
李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳[J]. 力学学报, 1996, 28(5): 627―632. Li Xiaojun, Liao Zhenpeng. Calculate the drift instability of local transmitting boundary in time domain [J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 627―632. (in Chinese)
[15]
周正华, 廖振鹏. 修正算子 的物理含义解释[J]. 地震工程与工程振动, 2005, 24(5): 17―19. Zhou Zhenghua, Liao Zhenpeng. The interpretation of physical implication of modified operator [J]. Earthquake Engineering and Engineering Vibration, 2005, 24(5): 17―19. (in Chinese)
[16]
Higdon R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation [J]. Matherntics of Computation, 1986, 47(176): 437―459.
[17]
Higdon R L. Numerical absorbing boundary conditions for the wave equation [J]. Matherntics of Computation, 1987, 49(179): 65―90.
[18]
Higdon R L. Absorbing boundary conditions for acoustic and elastic waves in stratified media [J]. Journal of Computational Physics, 1992, 101(2): 386―418.
[19]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185―200.
[20]
Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates [J]. Microwave and Optical Technology Letters, 1994, 7(13): 599―604.
[21]
Taflove A, Hagness S C. Computational electrodynamics: The FDTD Method [M]. London: Artech House Boston, 2000.
[22]
Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation [J]. Geophysics, 2007, 72(5): SM155―SM167.
[23]
Meza-Fajardo K C, Papageorgiou A S. A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis [J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1811― 1836.
[24]
Malvern L E. Introduction to the Mechanics of a Continuous Medium [M]. Englewood, New Jersey: Prentice-Hall, Inc., 1969.
[25]
Mooney H M. Some numerical solutions for Lamb’s problem [J]. Bulletin of the Seismological Society of America, 1974, 64(2): 473―491.
[26]
孙虎, 周丽. 基于谱元法的裂纹梁Lamb波传播特性研究[J]. 工程力学, 2012, 29(9): 50―55. Sui Hu, Zhou Li. Lamb wave propagation in a cracked beam using spectral finite element method [J]. Engineering Mechanics, 2012, 29(9): 50―55. (in Chinese)