全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

多场诱发表面和晶界扩散下沿晶微裂纹的演化

DOI: 10.6052/j.issn.1000-4750.2014.04.0320, PP. 27-32

Keywords: 沿晶微裂纹,表面扩散,晶界扩散,有限元法,应力迁移,电迁移

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于表面扩散和晶界扩散的经典理论及其弱解描述,对应力迁移、电迁移诱发表面扩散和晶界扩散下金属材料内部沿晶微裂纹的演化进行了有限元分析。详细讨论了扩散系数之比f、应力场Λ、电场χ和形态比β对沿晶微裂纹演化的影响。结果表明:多场下的沿晶微裂纹存在分节与不分节两种演化分叉趋势。f和χ有助于沿晶微裂纹扩展,而Λ阻碍沿晶微裂纹扩展。裂腔分节时间随着Λ的增大而逐渐减小,而随着β的增大而增大。当时,随着χ的增大,裂纹分节的时间显著减小,即χ加速裂纹分节;当时,χ对裂纹分节时间的影响不明显。

References

[1]  Liu Y, Wang X, Li Z. Scale effect on the shrinkage characteristics of a spherical cavity in stressed grain [J]. Metallurgical and Materials Transactions A, 2011, 42(7): 2107―2112.
[2]  Frank Garofalo. Fundamentals of creep and creep-rupture in metals [M]. Macmillan: University of California, 1965: 146―156.
[3]  Huang P Z, Sun J, Li Z H. Evolution of penny-shaped microcracks by interface migration [J]. International Journal of Solids and Structures, 2003, 40(8): 1959―1972.
[4]  L’ubomír Baňas, Robert Nürnberg. Finite element approximation of a three dimensional phase field model for void electromigration [J]. Journal of Scientific Computing, 2008, 37(2): 202―232.
[5]  L’ubomír Baňas, Robert Nürnberg. Phase field computations for surface diffusion and void electromigration in R3 [J]. Computing and Visualization in Science, 2009, 12(7): 319―327.
[6]  He D N, Huang P Z. A finite-element analysis of intragranular microcracks in metal interconnects due to surface diffusion induced by stress migration [J]. Computational Materials Science, 2014, 87(5): 65―71.
[7]  郭建伟, 黄佩珍. 内压对多场诱发表面扩散下微裂纹演化的影响[J]. 固体力学学报, 2013, 34(6): 602―606. Guo Jianwei, Huang Peizhen. The effects of the internal pressure on the evolution of microcracks by multi- physical fields induced surface diffusion [J]. Chinese Journal of Solid Mechanics, 2013, 34(6): 602―606. (in Chinese)
[8]  Li E, Chen X, Wang H, Wang X, Li Z H. Morphological evolution of a void under thermal and mechanical loads [J]. Journal of Shanghai Jiao tong University (Science), 2009, 14(1): 1―4.
[9]  Wang H, Li Z H, Sun J. Effects of stress and temperature gradients on the evolution of void in metal interconnects driven by electric current and mechanical stress [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(4): 607―615.
[10]  徐春风, 黄佩珍. 力、电、热作用下晶内微裂纹的演化[J]. 工程力学, 2013, 30(6): 6―10. Xu Chunfeng, Huang Peizhen. The evolution of intragranular microcracks induced by stress, electro, and thermo-migrations [J]. Engineering Mechanics, 2013, 30(6): 6―10. (in Chinese)
[11]  Xia L, Bower A F, Suo Z, Shih C F. A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(9): 1473―1493.
[12]  Sun B, Suo Z. A finite element method for simulating interface motion-II. Large shape change due to surface diffusion [J]. Acta Materialia, 1997, 45(12): 4953―4962.
[13]  Herring C, Some theorems on the free energies of crystal surfaces [J]. American Physical Society’s New Journal, 1951, 82(1): 87―93.
[14]  郭建伟. 多场诱发表面扩散、晶界扩散下微裂纹的演化[D]. 南京: 南京航空航天大学, 2012. Guo Jianwei. The microcrack evolution due to surface diffusion and grain-boundary diffusion induced by multi- physical fields [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[15]  黄鹏. 内压对电场下晶内微裂纹演化的影响[J]. 计算力学学报, 2012, 29(4): 620―624. Huang Peng. The effects of the internal pressure on the evolution of intragranular microcracks under electric field [J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 620―624. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133