全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

振动松弛对斜索参数振动的影响分析

Keywords: 斜索,振动松弛,参数振动,抗弯刚度,有限差分法

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了振动松弛对斜索参数振动的影响。从考虑弯曲刚度和垂度的斜索运动方程出发,通过有限差分法进行振动松弛的数值计算,分析振动松弛对斜索副不稳定区域和主不稳定区域参数振动响应的影响。结果表明:斜索发生参数振动时,振动松弛首先出现在斜索底端;出现压力时的最小支点激励幅值随斜索的倾角而改变;在小振幅支点激励作用下,小倾角斜索易在副不稳定区域出现振动松弛。

References

[1]  Fujino Y, Kimura K. Cables and cable vibration in cable-supported bridge [C]. Proceedings of International Seminar on Cable Dynamics, Technical Committee on Cable Structures and Wind, Japan Association for Wind Engineer, 1997: 1―11.
[2]  Yamaguchi H. Fundamentals of cable dynamics [C]. Proceedings of International Seminar on Cable Dynamics, Technical Committee on Cable Structures and Wind, 1997: 81―94.
[3]  Kovács I. Zur frage der seilschwingungen und der seildampfung [J]. Die Bautechnik, 1982, 59(10): 325―332.
[4]  Tagata G. Harmonically forced finite amplitude vibration of a string [J]. Journal of Sound and Vibration, 1997, 51(4): 483―492.
[5]  Takahashi K. Dynamic stability of cables subjected to an axial periodic load [J]. Journal of Sound and Vibration, 1991, 144(2): 323―330.
[6]  Lilien J L, Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures [J]. Journal of Sound and Vibration, 1994, 174(1): 69―90.
[7]  李国豪. 桥梁结构稳定与振动[M]. 北京: 中国铁道出版社, 1996: 457―463. Li Guohao. Stability and vibration of bridge structure [M]. Beijing: China Railway Press, 1996: 457―463. (in Chinese)
[8]  陈水生, 孙炳楠, 胡隽. 斜拉索受轴向激励引起的面内参数振动分析[J]. 振动工程学报, 2002, 15(2): 144―150. Chen Shuisheng, Sun Bingnan, Hu Jun. Analysis of stayed-cable vibration caused by axial excitation [J]. Journal of Vibration Engineering, 2002, 15(2): 144―150. (in Chinese)
[9]  Laura PAA, Maurizi M J. Comments on “Dynamic stability of cables subjected to an axial periodic load” [J]. Journal of Sound and Vibration, 1992, 155(1): 189.
[10]  Wu Q, Takahashi K, Nakamura S. Nonlinear vibrations of cables considering loosening [J]. Journal of Sound and Vibration, 2003, 261(3): 385―402.
[11]  Wu Q, Takahashi K, Nakamura S. Nonlinear response of cables subject to periodic support excitation considering cable loosening [J]. Journal of Sound and Vibration, 2004, 271(1/2): 453―463.
[12]  Yamaguchi H, Ito M. Linear theory of free vibrations of an inclined cable in three dimensions [J]. Proceedings of the Japan Society of Civil Engineers, 1979, 286: 29―38.
[13]  Triantafyllou M S. The dynamics of taut inclined cables [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1984, 37(3): 421―440.
[14]  吴庆雄, 陈宝春. 塔桅结构的斜索面内固有振动计算的修正Irvine方程[J]. 工程力学, 2007, 24(4): 18―23. Wu Qingxiong, Chen Baochun. Modified Irvine equations for in-plane natural vibrations of inclined cables in tower and guyed mast structures [J]. Engineering Mechanics, 2007, 24(4): 18―23. (in Chinese)
[15]  吴庆雄, 王文平, 陈宝春. 索梁结构非线性振动有限元分析[J]. 工程力学, 2013, 30(2): 347―354, 382. Wu Qingxiong, Wang Wenping, Chen Baochun. Finite element analysis for nonlinear vibration of cable-beam structure [J]. Engineering Mechanics, 2013, 30(2): 347―354, 382. (in Chinese)
[16]  Ames W F. Numerical methods for partial differential equations [M]. 2nd ed. New York, Academic Press, 1977: 19―23.
[17]  Irvine H M. Cable structures [M]. Dover Publications, In., New York: The Massachusetts Institute of Technology Press, 1981: 43―47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133