全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

城市区域建筑物震害预测剪切层模型及其参数确定方法

Keywords: 城市区域震害模拟,剪切层模型,Hazus,滞回模型,参数确定方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统基于易损性矩阵及单自由度模型的城市建筑震害预测方法已经不能满足现代城市震害预测精度和多样性的需要。多自由度剪切层模型由于具备可接受的精度和较高的效率,非常适合于城市区域建筑物的震害模拟。但其层间滞回模型的确定存在较大的困难。因此,该研究以国内外得到广泛应用的Hazus软件作为基础,提出了相应的城市区域建筑物震害预测剪切层模型,并基于Hazus软件中通过大量调查统计得到的建筑抗震性能参数,提出了剪切层模型参数的确定方法,为精细化的城市区域建筑震害预测提供参考。

References

[1]  中国地震局. 历史地震目录[EB/OL]. http://www.cea. gov.cn/publish/dizhenj/468/496/index.html, 2013.1.1.
[2]  China Earthquake Administration. Historical earthquake catalog [EB/OL]. http://www.cea.gov.cn/publish/dizhenj/
[3]  468/496/index.html, 2013.1.1. (in Chinese)
[4]  Federal Emergency Management Agency (FEMA) , National Institute of Building Sciences (NIBS). Earthquake loss estimation methodology — HAZUS97, Technical manual [R]. Washington, D.C: Federal Emergency Management Agency, 1997.
[5]  Applied Technology Council (ATC). Earthquake Damage Evaluation Data for California, Report No. ATC-13 [R]. California: Redwood City, 1985.
[6]  Elnashai A, Hampton S, Karaman H, et al. Overview and applications of Maeviz-Hazturk 2007 [J]. Journal of Earthquake Engineering, 2008, 12(S2): 100―108.
[7]  Mouroux P, Brun B Le. Presentation of RISK-UE project [J]. Bulletin of Earthquake Engineering, 2006, 4(4): 323―339.
[8]  Hung H, Chen L. The application of seismic risk-benefit analysis to land use planning in Taipei City [J]. Disasters, 2007, 31(3): 256―276.
[9]  韩博, 陆新征, 许镇, 李易, 基于高性能GPU计算的城市建筑群震害模拟[J]. 自然灾害学报, 2012, 21(5): 16―22.
[10]  Han Bo, Lu Xinzheng, Xu Zhen, Li Yi. Seismic damage simulation of urban buildings based on high performance GPU computing [J]. Journal of Natural Disasters, 2012, 21(5): 16―22. (in Chinese)
[11]  Moghaddam H, Mohammadi R K. Ductility reduction factor of MDOF shear-building structures [J]. Journal of Earthquake Engineering, 2001, 5(3): 425―440.
[12]  Pampanin S. Performance-based seismic response of frame structures including residual deformations. Part II: multi-degree of freedom systems [J]. Journal of Earthquake Engineering, 2003, 7(1): 119―147.
[13]  Iwan W D. Drift spectrum: Measure of demand for earthquake ground motions [J]. Journal of Structural Engineering, 1997, 123(4): 397―404.
[14]  Veletsos A S, Vann W P. Response of ground-excited elasto-plastic systems [J]. ASCE, 1971, 97(4): 1257―1281.
[15]  Diaz O, Mendoza E, Esteva L. Seismic ductility demands predicted by alternate models of building frames [J]. Earthquake Spectra, 1994, 10(3): 465―487.
[16]  Pampanin S, Priestley M J N, Sritharan S. Analytical modelling of the seismic behaviour of precast concrete frames designed with ductile connections [J]. Journal of Earthquake Engineering, 2001, 5(3): 37―41.
[17]  经杰, 叶列平, 钱稼如. 基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析[J]. 工程力学, 2003, 20(3): 31―37.
[18]  Jing Jie, Ye Lieping, Qian Jiaru. Inelastic seismic response of lumped mass MDOF systems based on energy concept [J]. Engineering Mechanics, 2003, 20(3): 31―37. (in Chinese)
[19]  Aoyama H. A method for the evaluation of the seismic capacity of existing reinforced concrete buildings in Japan [J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1981, 14(3): 105―130.
[20]  Hajirasouliha I, Doostan A. A simplified model for seismic response prediction of concentrically braced frames [J]. Advances in Engineering Software, 2010, 41(3): 497―505.
[21]  武藤清. 结构物动力设计[M]. 北京: 中国建筑工业出版社, 1984: 41―43.
[22]  Hidalgo P A, Jordan R M, Martinez M P. An analytical model to predict the inelastic seismic behavior of shear-wall reinforced concrete structures [J] Engineering Structures, 2002, 24(1): 85―98.
[23]  Voon K C. In-plane seismic design of concrete masonry structures [D]. New Zealand: University of Auckland, 2007.
[24]  Steelman J, Hajjar J. Influence of inelastic seismic response modeling on regional loss estimation [J]. Engineering Structures, 2009, 31(12): 2976―2987.
[25]  Federal Emergency Management Agency (FEMA). Multi-hazard Loss Estimation Methodology, Earthquake Model, Hazus-MH 2.1 Technical Manual [R]. Washington, D.C.: Federal Emergency Management Agency, 2012.
[26]  Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate cyclic strength deterioration and stiffness degradation [J]. Earthquake Engineering and Structural Dynamics, 2005, 34(12): 1489―1511.
[27]  Chopra A K. Dynamics of Structures 4th Edition [M]. New Jersey: Prentice-Hall, 2012: 171―174.
[28]  Hori M. Introduction to computational earthquake engineering [M]. London: Imperial College Press, 2006: 253―276.
[29]  GB 50009-2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
[30]  GB 50009-2012, Load Code for the Design of Building Structure [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[31]  Sobhaninejad G, Hori M, Kabeyasawa T. Enhancing integrated earthquake simulation with high performance computing [J]. Advances in Engineering Software, 2011, 42(5): 286―292.
[32]  GB 50011-2010, 建筑结构抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[33]  GB 50011-2010, Code for Seismic Design of Buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[34]  马玉虎, 陆新征, 叶列平, 唐代远, 李易. 漩口中学典型框架结构震害模拟与分析[J]. 工程力学, 2011, 28(5): 71―77.
[35]  Ma Yuhu, Lu Xinzheng, Ye Lieping, Tang Daiyuan, Li Yi. Seismic damage simulation and analysis of typical RC frames of Xuankou School [J]. Engineering Mechanics, 2011, 28(5): 71―77. (in Chinese)
[36]  Li Y, Lu X Z, Guan H, Ye L P. An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures [J]. Engineering Structures, 2011, 33(10): 2931―2942.
[37]  Miao Z W, Ye L P, Guan H, Lu X Z. Evaluation of modal and traditional pushover analyses in frame-shear-wall structures [J]. Advances in Structural Engineering, 2011, 14(5): 815―836.
[38]  Tang B X, Lu X Z, Ye L P, Shi W. Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C [J]. Earthquake Engineering and Engineering Vibration, 2011, 10(3): 369―377.
[39]  施炜, 叶列平, 陆新征, 唐代远. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3): 41―48.
[40]  Muto K. Dynamic design for structures [M]. Beijing: China Architecture & Building Press, 1984: 41―43. (in Chinese)
[41]  何广乾, 魏琏, 戴国莹. 论地震作用下多层剪切型结构的弹塑性变形计算[J]. 土木工程学报, 1982, 15(3): 10―19.
[42]  He Guangqian, Wei Lian, Dai Guoying. On elasto-plastic deformations of multi-storey shear type structures due to earthquake effect [J]. China Civil Engineering Journal, 1982, 15(3): 10―19. (in Chinese)
[43]  陈光华. 地震作用下多层剪切型结构弹塑性位移反应的简化计算[J]. 建筑结构学报, 1984, (2): 45―57.
[44]  Chen Guanghua. Simplified calculation of elastoplastic story drift responses of multistory shear type structures subjected to earthquakes [J]. Journal of Building Structures, 1984, (2): 45―57. (in Chinese)
[45]  Federal Emergency Management Agency (FEMA). Multi-hazard Loss Estimation Methodology Hazus -MH 2.1 Advanced Engineering Building Module (AEBM) Technical and User’s Manual [R]. Washington, D.C.: Federal Emergency Management Agency, 2012.
[46]  Lin S B, Xie L L, Gong M S, Li M. Performance-based methodology for assessing seismic vulnerability and capacity of buildings [J]. Earthquake Engineering and Engineering Vibration, 2010, 9(2): 157―165.
[47]  Mahin S A, Lin J. Construction of inelastic response spectra for single-degree-of-freedom systems, computer program and applications, Report No. UCB/EERC-83/17 [R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1983.
[48]  Tong G, Zhao Y. Seismic force modification factors for modified-Clough hysteretic model [J]. Engineering Structures, 2007, 29(11): 3053―3070.
[49]  Miranda E, Jorge R G. Influence of stiffness degradation on strength demands of structures built on soft soil sites [J]. Engineering Structures, 2002, 24(10): 1271―1281.
[50]  Ruiz-Garcia J. Performance-based assessment of existing structures accounting for residual displacements [D]. Stanford, California: Department of Civil and Environmental Engineering, Stanford University, 2004.
[51]  Peng L. Seismic response evaluation of self-centering structural systems [D]. Stanford, California: Department of Civil and Environmental Engineering, Stanford University, 2005.
[52]  Kinali K, Ellingwood B R. Seismic fragility assessment of steel frames for consequence-based engineering: A case study for Memphis, TN [J]. Engineering Structures, 2007, 29(6): 1115―1127.
[53]  Shi Wei, Ye Lieping, Lu Xinzheng, Tang Daiyuan. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels [J]. Engineering Mechanics, 2011, 28(3): 41―48. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133