全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

包含突变过程的结构时变可靠度的概率密度演化方法及其应用

DOI: 10.6052/j.issn.1000-4750.2012.08.0627

Keywords: 突变,加固,概率密度演化方法,时变可靠度,承载力裕量,Diracδ,序列逼近

Full-Text   Cite this paper   Add to My Lib

Abstract:

结构的局部破坏或加固均会引起性能突变,导致结构功能函数严重不连续,从而增加可靠度分析的难度。为此,该文拟在概率密度演化理论的框架内建立突变结构的时变可靠度分析方法。首先,引入Heaviside函数建立了突变结构时变功能函数的统一表达式;其次,基于此表达式推导了突变结构承载力裕量的广义密度演化方程,本质上该方程为包含无穷系数的分段偏微分方程,数值求解困难;再次,针对该方程的形式解析解引入Dirac#x003b4;序列算法,为承载力裕量概率密度函数的获取提供了可行的方法;然后,给出了突变结构时变可靠度分析的一维积分公式,建立了包含突变过程的时变可靠度分析的概率密度演化方法;最后,将其应用于改造加固结构的时变可靠度分析,并以一个简单的悬臂梁破坏-加固算例验证了建议算法的可行性,且通过与MonteCarlo法的对比验证了建议方法的高效性和准确性。

References

[1]  Liu N, Liu G T. Time-dependent reliability assessment for mass concrete structures [J]. Structural Safety, 1999, 21(1): 23―43.
[2]  Bhargava K, Mori Y, Ghosh A K. Time-dependent reliability of corrosion-affected RC beams. Part 2: Estimation of time-dependent failure probability [J]. Nuclear Engineering and Design, 2011, 241(5): 1385― 1394.
[3]  贡金鑫, 赵国藩. 考虑抗力随时间变化的结构可靠度分析[J]. 建筑结构学报, 1998, 19(5): 43―51.
[4]  Gong Jinxin, Zhao Guofan. Reliability analysis for deteriorating structures [J]. Journal of Building Structures, 1998, 19(5): 43―51. (in Chinese)
[5]  李杰, 陈建兵. 随机动力系统中的广义密度演化方程[J]. 自然科学进展, 2006, 16(6): 712―719.
[6]  Li Jie, Chen Jianbing. The probability density evolution analysis of stochastic dynamic systems [J]. Progress in Natural Science, 2006, 16(6): 712―719. (in Chinese)
[7]  Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation [J]. Structural Safety, 2008, 30(1): 65―77.
[8]  Li J, Chen J B, Fan W L. The equivalent extreme-value event and evaluation of the structural system reliability [J]. Structural Safety, 2007, 29(2): 112―131.
[9]  Ghanem R, Spanos P D. Stochastic finite element: A spectral approach [M]. Berlin: Springer-Verlag, 1991: 17―41.
[10]  Farlow S J. Partial differential equations for scientists and engineers [M]. New York: Dover Publications Inc, 1993: 205―212.
[11]  陈建兵, 李杰. 随机结构静力反应概率密度演化方程的差分方法[J]. 力学季刊, 2004, 25(1): 21―28.
[12]  Chen Jianbing, Li Jie. Difference method for probability density evolution equation of stochastic structural response [J]. Chinese Quarterly of Mechanics, 2004, 25(1): 21―28. (in Chinese)
[13]  Fan W L, Chen J B, Li J. Solution of generalized density evolution equation via a family of #x003b4; sequences [J]. Computational Mechanics, 2009, 43(6): 781―796.
[14]  Li J, Chen J B. The number theoretical method in response analysis of nonlinear stochastic structures [J]. Computational Mechanics, 2007, 39(6): 693―708.
[15]  Chen J B, Li J. Strategy for selecting representative points via tangent spheres in the probability density evolution method [J]. International Journal for Numerical Methods in Engineering, 2008, 74(13): 1988―2014.
[16]  李松辉. 碳纤维布加固桥梁的设计理论研究[D]. 大连: 大连理工大学, 2003.
[17]  Li Songhui. Study on design philosophy of reinforced concrete bridges strengthened with externally bonded carbon reinforced polymer composites [D]. Dalian: Dalian University of Technology, 2003. (in Chinese)
[18]  李田, 刘西拉. 砼结构的耐久性设计[J]. 土木工程学报, 1994, 27(2): 47―55.
[19]  Li Tian, Liu Xila. Durability design of concrete structures [J]. China Civil Engineering Journal, 1994, 27(2): 47―55. (in Chinese)
[20]  滕智明, 陈家夔. 钢筋混凝土构件正截面强度计算 [C]// 中国建筑科学院编. 钢筋混凝土结构设计与构造―1985年设计规范背景资料汇编. 北京: 中国建筑科学研究院, 1985: 53―60.
[21]  Teng Zhiming, Chen Jiakui. Flexure strength evaluation of RC members [C]// China Academy of Building Research, editor. Design and detailing of RC structures. Beijing: China Academy of Building Research, 1985: 53―60. (in Chinese)
[22]  Racktiwz R. Reliability analysis ― A review and some perspectives [J]. Structural Safety, 2001, 23(4): 365― 395.
[23]  Melchers R E. Structural reliability analysis and prediction [M]. 2nd ed. Chichester: John Wiley Sons, Inc., 1999: 1―131.
[24]  Ditlevsen O, Madsen H O. Structural reliability methods [M]. Internet edition 2.2.5. http: //www.mek.dtu.dk/staff/ od/books.htm, 2005.
[25]  Madsen H O, Krenk S, Lind N C. Methods of structural safety [M]. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986: 1―70.
[26]  李继华, 林忠民, 李明顺, 等. 建筑结构概率极限状态设计[M]. 北京: 中国建筑工业出版社, 1990: 123―190.
[27]  Li Jihua, Lin Zhongmin, Li Mingshun, et al. The probability-based limit state design method for building structures [M]. Beijing: China Architecture Building Press, 1990: 123―190. (in Chinese)
[28]  吴世伟. 结构可靠度分析[M]. 北京: 人民交通出版社, 1990: 71―195.
[29]  Wu Shiwei. Reliability analysis of structures [M]. Beijing: China Communications Press, 1990: 71―195. (in Chinese)
[30]  赵国藩. 工程结构可靠性理论与应用[M]. 大连: 大连理工大学出版社, 1996: 18―158.
[31]  Zhao Guofan. The theory of structural reliability and its application [M]. Dalian: Dalian University of Technology Press, 1996: 18―158. (in Chinese)
[32]  管昌生, 李桂青, 江世宏. 时变结构与时变可靠度评述[J]. 武汉工业大学学报, 1995, 17(4): 36―38.
[33]  Guan Changsheng, Li Guiqing, Jiang Shihong. Review on time dependent structures and time dependent reliability [J]. Journal of Wuhan University of Technology, 1995, 17(4): 36―38. (in Chinese)
[34]  Yao J T P. Damage assessment and reliability evaluation of existing structures [J]. Engineering Structures, 1979, 1(5): 245―251.
[35]  Stewart M G, Rosowsky D V. Time-dependent reliability of deteriorating reinforced concrete bridge decks [J]. Structural Safety, 1998, 20(1): 91―109.
[36]  徐福泉. 碳纤维布加固钢筋混凝土梁静载性能研究[D]. 北京: 中国建筑科学研究院, 2001.
[37]  Xu Fuquan. Study on static performance of reinforced concrete beam strengthened with carbon fiber sheets [D]. Beijing: China Academy of Building Research, 2001. (in Chinese)
[38]  GB 50010-2002, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002.
[39]  GB 50010-2002, Code for design of concrete structures [S]. Beijing: China Architecture Building Press, 2002. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133