Nicholas T. Tensile testing of materials at high rates of strain [J]. Experimental Mechanics, 1981, 2l: 177―185.
[4]
Verleysen P, Degrieck J, Verstraetel T, Van Slycken J. Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials [J]. Experimental Mechanics, 2008, 48: 587―598.
[5]
Huh H, Kang W J, Han S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals [J]. Experimental Mechanics, 2002, 42: 8―17.
[6]
Staab G H, Gilat A. A direct-tension split Hopkinson bar for high strain-rate testing [J]. Experimental Mechanics, 1991, 31: 232―235.
[7]
Xiaoyu H, Daehn G S. Effect of velocity on flow localization in tension [J]. Acta Materialia, 1996, 44: 1021―1033.
Hallquist J O. LS-DYNA Keywords Use’s Manual (Version 970) [M]. USA: LSTC, April, 2003.
[10]
Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society B, 1949, 62: 676―700.
[11]
Johnson G R, Cook W H. A constitutive mode and data for metals subjected to large strains, high strain rate and high temperatures [C]// Johnson G R, Cook W H. Proceedings of Seventh International Symposium on Ballistics. Hague, The Netherlands, 1983: 541―547.
[12]
Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence [J]. International Journal of Plasticity, 2008, 24: 1071―1096.
Wang Huanran, Xie Shugang, Chen Danian, et al. On the checking of fitted constitutive relation of an Mg-Al alloy under uniaxial compression at high strain rates [J]. Engineering Mechanics, 2006, 23(9): 179―183. (in Chinese)