全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于应变梯度位错理论的纳晶-无定形态层状复合材料的力学性能研究

DOI: 10.6052/j.issn.1000-4750.2012.07.0497, PP. 224-228

Keywords: 纳晶-无定态复合层状材料,力学性能,应变梯度,交界面,位错理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳晶-无定形态层状复合材料具有高强度高硬度还有良好的韧性等力学性能。为了定量评估这种新型材料的力学性能,建立了基于位错密度和应变梯度的力学模型。即在塑性变形的初始阶段,位错在晶态-非晶态层的交界面处产生,之后通过滑移穿过纳晶层到达对面的晶态-非晶态的交界面处被吸收。鉴于纳晶层和无定形态层的不同特性和界面的相互作用,理论分析了纳晶层中的位错演化过程以及交界面的损伤情况。结果表明,理论计算与实验结果基本吻合,且纳晶层无定形态之间的交界面具有很好的变形协调能力而不会在界面层产生失效。

References

[1]  杨玉芬, 陈清如. 纳米材料的基本特征与纳米科技的发展[J]. 中国粉体技术, 2002, 8(3): 24―27.
[2]  Jian S R, Li J B, Chen K W, Jang Jason S C, Juang J Y, Wei P J, Lin J F. Mechanical responses of Mg-based bulk metallic glasses [J]. Intermetallics, 2010(10), 18: 1930―1935.
[3]  Liu Zengqian, Li Ran, Liu Gang, Su Wenhuang, Wang Hui, Li Yan, Shi Minjie, Luo Xuekun, Wu Guojuan, Zhang Tao. Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites [J]. Acta Materialia, 2012, 60(6/7): 3128―3139.
[4]  Yavari A R, Lewandowski J J, Eckert J. Mechanical properties of bulk metallic glasses [J]. Materials Research Bulletin, 2007, 32(8): 635―638.
[5]  Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Materials Science and Engineering: R, 2004, 44(2/3): 45―89.
[6]  Wang Yinmin, Li Ju, Hamza Alex V, Barbee Troy W. Ductile crystalline-amorphous nanolaminates [J]. Proceedings of the National Academy of Sciences, 2007, 104(27): 11155―11160.
[7]  Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Materialia, 2003, 51(17): 59―72.
[8]  Spearot D E, Jacob K I, McDowell D L. Dislocation nucleation from bicrystal interfaces with dissociated structure [J]. International Journal of Plasticity, 2007, 23(1): 143―160.
[9]  Ma Lu, Zhou Jianqiu, Zhu Rongtao. Effects of strain gradient on the mechanical behaviors of nanocrystalline materials [J]. Materials Science and Engineering A, 2009, 507(1/2): 42―49.
[10]  Gao H, Huang Y, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-I. theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239―1263.
[11]  Yang Zhenyu, Lu Zixing, Zhao Ya-Pu. Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires [J]. Computational Materials Science, 2009, 46(1): 142―150.
[12]  Nix W D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411―425.
[13]  Pekarskaya E, Kim C P, Johnson W L. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite [J]. Journal of Materials Research, 2001, 16(9): 2513―2518.
[14]  Capolungo L, Jochum C, Cherkaoui M, Qu J. Homogenization method for strength and inelastic behavior of nanocrystalline materials [J]. International Journal of Plasticity, 2005, 21(1): 67―82.
[15]  Kocks U F, Mecking F. Physics and phenomenology of strain hardening: the FCC case [J]. Progress in Materials Science, 2003, 48(3): 171―273.
[16]  Amouyal Y, Rabkin E. A scanning force microscopy study of grain boundary energy in copper subjected to equal channel angular pressing [J]. Acta Materialia, 2007, 55(20): 6681―6689.
[17]  Tvergaard V, Hutchinson, J W. The influence of plasticity on mixed mode interface toughness [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6): 1119―l135.
[18]  O’Day M P, Curtin W A. Bimaterial interface fracture: A discrete dislocation model [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(2): 359―382.
[19]  王纪武, 陈恳, 李嘉, 等. 典型柔性铰链精度性能的研究[J]. 清华大学学报, 2001, 11(41): 49―52.
[20]  Wang Jiwu, Chen Ken, Li Jia, et a1. Precision of typical flexible hinges [J]. Journal of Tsinghua University, 2001, 11(41): 49―52. (in Chinese)
[21]  于靖军, 周强, 毕树生, 等. 基于动力学性能的全柔性机构优化设计[J]. 机械工程学报, 2003, 39(8): 32―36.
[22]  Yu Jingjun, Zhou Qiang, Bi Shusheng, et a1. Optimal design of a fully compliant mechanism based on its dynanlic characteristic [J]. Chinese Journal of Mechanical Engineering, 2003, 39(8): 32―36. (in Chinese)
[23]  陈贵敏, 贾建援, 刘小院, 勾燕洁. 椭圆柔性铰链的计算与分析[J]. 工程力学, 2006, 23(5): 152―156.
[24]  Chen Guimin, Jia Jianyuan, Liu Xiaoyuan, Gou Yanjie. Design calculation and analysis of elliptical flexure hinges [J]. Engineering Mechanics, 2006, 23(5): 152―156. (in Chinese)
[25]  Aten Q T, Jensen B D, Howell L L. Geometrically non-linear analysis of thin-film compliant MEMS via shell and solid elements finite elements in analysis and design [J]. Finite Elements in Analysis and Design, 2012, 49: 70―77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133