全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

几个强度理论的屈服实验研究

DOI: 10.6052/j.issn.1000-4750.2012.09.0622, PP. 181-187

Keywords: 塑性金属,屈服,强度实验,强度理论,极限应变能强度理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据多种塑性金属的二向和三向拉伸与压缩组合主应力屈服强度实验数据,对Tresca强度理论、Mises强度理论、Mohr-Coulomb强度准则、Beltrami最大能量理论、极限应变能强度理论等几个强度理论计算的相对误差进行了比较分析。结果表明极限应变能强度理论计算的误差在10%以内,为最小。Tresca强度理论、Mises强度理论和Mohr-Coulomb强度准则计算的误差分别为-36%、-27%、-23%,计算结果比试验结果偏保守。Tresca强度理论和Mises强度理论都不适用于拉伸屈服强度和压缩屈服强度相等的材料,该材料的理论剪切屈服强度为拉伸屈服强度的倍。极限应变能强度理论可用于二向和三向拉伸与压缩组合主应力强度计算,在全拉伸和全压缩主应力状态下与Rankine强度理论一致,具有工程应用前景和价值。

References

[1]  Yu Maohong. Advances in strength theories for materials under complex stress state in the 20th century [J]. Applied Mechanics Reviews, ASME, 2002, 55(3): 169―218.
[2]  Liu Guanglian. A novel limiting strain energy strength theory [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(6): 1651―1662.
[3]  刘光连, 刘振, 李显方. 极限应变能强度准则在混凝土强度计算中的应用研究. 全国土木工程博士生学术论坛优秀论文集[C]. 长沙: 中南大学出版社, 2009: 533―541.
[4]  Liu Guanglian, Liu Zhen, Li Xianfang. Application research of limiting strain energy strength theory in strength calculation of concrete. National civil engineering doctoral academic forum symposium [C]. Changsha: Central South University Press, 2009: 533―541. (in Chinese)
[5]  刘光连, 刘振. 极限应变能强度理论应用于导弹结构极限强度设计的研究[OL]. http://www.paper.edu.cn/ index.php/default/releasepaper/content/201104―72.
[6]  Liu Guanglian, Liu Zhen. Research of limiting strain energy strength theory with application to ultimate strength design of missile structure [OL]. http://www. paper.edu.cn/index.php/default/releasepaper/content/ 201104―72. (in Chinese)
[7]  徐远杰. Tresca与Mises屈服理论值的比较[J]. 力学与实践, 1994, 16(5): 62―63.
[8]  Xu Yuanjie. The comparison of the value on the Tresca and Mises the yielding theory [J]. Mechanics and Engineering, 1994, 16(5): 62―63. (in Chinese)
[9]  薛福林. Tresca与Mises屈服理论值的简明比较法[J]. 力学与实践, 1997, 19(5): 51―51.
[10]  Xue Fulin. A simple method for the comparison of the value on the Tresca and Mises the yielding theory [J]. Mechanics and Engineering, 1997, 19(5): 51―51. (in Chinese)
[11]  郑苏. 两种最常用屈服准则的简明比较法[J]. 力学与实践, 2003, 25(2): 62―63.
[12]  Zheng Su. A simple method for comparison of the two most commonly used yield criteria [J]. Mechanics and Engineering, 2003, 25(2): 62―63. (in Chinese)
[13]  Li Xide, Xie Huimin, Kang Yilan, Wu Xiaoping. A Brief Review and Prospect of Experimental Solid Mechanics in China [J]. Acta Mechanica Solida Sinica, 2010, 23(6): 498―548.
[14]  杨福俊, 何小元, 谢惠民, 亢一澜. 实验力学最新进展―2008国际实验力学会议概况[J]. 力学进展, 2009, 39(5): 638―640.
[15]  Yang Fujun, He Xiaoyuan, Xie Huimin, Kang Yilan. New Progress of Experimental Mechanics ― Introduction to the International Conference on Experimental Mechanics in 2008 [J]. Advances in Mechanics, 2009, 39(5): 638―640. (in Chinese)
[16]  Budynas R G. Advanced strength and applied stress analysis [M]. 2nd ed. New York: McGraw-Hill, 1999: 513―515.
[17]  俞茂宏, Yoshimine M, 强洪夫, 昝月稳, 肖耘, 李林生, 盛祖铭. 强度理论的发展和展望[J]. 工程力学, 2004, 21(6): 1―20.
[18]  Timoshenko S. 材料力学 [M]. 汪一麟, 译. 北京:科学出版社, 1979: 380―392.
[19]  Timoshenko S. Mechanics of materials [M]. Translated by Wang Yilin. Beijing: Science Press, 1979: 380―392. (in Chinese)
[20]  刘光连. 双剪统一强度理论计算塑性金属材料强度的唯一性[J]. 中南大学学报(自然科学版), 2008, 39(6): 1280―1284.
[21]  Liu Guanglian. Uniqueness in calculating strength of plastic metals based on twin-shear unified strength theory [J]. Journal of Central South University (Science and Technology), 2008, 39(6): 1280―1284. (in Chinese)
[22]  Yu Maohong, He Linan. A new model and theory on yield and failure of materials under complex stress state [M]. United Kingdom: Pergamon Press, 1991: 841―846.
[23]  GB/T 10128-2007, 金属材料室温扭转试验方法[S]. 北京: 中国标准出版社, 2007.
[24]  GB/T 10128-2007, Metallic materials-Torsion testing at ambient temperature [S]. Beijing: China Standard Press, 2007. (in Chinese)
[25]  Liu Guanglian, Huang Minghui, Tan Qing, Li Xianfang, Liu Zhen. Analysis of complete plasticity assumption for solid circular shaft under pure torsion and calculation of shear stress [J]. Journal of Central South University of Technology, 2011, 18(4): 1018―1023.
[26]  GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002.
[27]  GB/T 228-2002, Metallic materials-Tensile testing at ambient temperature [S]. Beijning: China Standard Press, 2002. (in Chinese)
[28]  GB/T 7314-2005, 金属材料室温压缩试验方法[S]. 北京: 中国标准出版社, 2005.
[29]  GB/T 7314-2005, Metallic materials-Compression testing at ambient temperature [S]. Beijing: China Standard Press, 2005. (in Chinese)
[30]  GB/T 22315-2008, 金属材料弹性模量和泊松比试验方法[S]. 北京: 中国标准出版社, 2009.
[31]  GB/T 22315-2008, Metallic materials-Determination of modulus of elasticity and Poisson’s ratio [S]. Beijing: China Standard Press, 2009. (in Chinese)
[32]  Guest J J. On the strength of ductile materials under combined stress [J]. Philosophical Magazine Series 5, 1900: 202―272.
[33]  机械工程手册电机工程手册编辑委员会编. 机械工程手册[M]. 北京: 机械工业出版社, 1996: 5-57―5-58
[34]  Handbook of Mechanical Engineering Electrical Engineering Handbook Editorial Committee. Machine engineering handbook I [M]. Beijing: Mechanical Industry Press, 1996: 5-57―5-58. (in Chinese)
[35]  Reismann H, Pawlik P S. 弹性力学―理论和应用[M]. 于天祺, 译. 上海: 华东化学化工学院出版社, 1989: 129.
[36]  Reismann H, Pawlik P S. Elasticity theory and applications [M]. Translated by Yu Qize. Shanghai: East China College of Chemistry and Chemical Press, 1989: 129. (in Chinese)
[37]  Gokhfeld D A, Sadakov O S, Kononov K M. On the ultimate strain criterion for fracture prediction at normal and elevated temperatures [J]. Dynamics, Strength & Wear-resistance of Machines, 1997, 3: 12―18.
[38]  Boresi A P, Sidebottm O M, Seely F B, Smith J O. 高等材料力学[M]. 汪一麟, 汪一骏, 译. 北京: 科学出版社, 1987: 78―87.
[39]  Boresi A P, Sidebottm O M, Seely F B, Smith J O. Advanced mechanics of materials [M]. Translated by Wang Yilin, Wang Yijun. Beijing: Science Press, 1987: 78―87. (in Chinese)
[40]  苟文选. 材料力学: I [M]. 北京: 科学出版社, 2005: 33―34, 272―309.
[41]  Gou Wenxuan. Material mechanics: I [M]. Beijing: Science Press, 2005: 33―34, 272―309. (in Chinese)
[42]  Hearn E J. Mechanics of materials (Volume 1) [M]. 2nd ed. England: England Oxford Pergamon Press, 1985: 401―414.
[43]  Christensen R M. Yield functions/failure criteria for isotropic materials [J]. Proceedings of the Royal Society A, 1997, 453: 1473―1491.
[44]  Stassi F. Yield and fracture of metals under combined stresses [J]. Strength of Materials, 1974, 5(5): 549―558.
[45]  Theocaris P S. Failure criteria for isotropic bodies revisited [J]. Engineering Fracture Mechanics, 1995, 51(2): 239―264.
[46]  Stassi-D'Alia F. Flow and fracture of materials according to a new limiting condition of yielding [J]. Meccanica, 1967, 2(3): 178―195.
[47]  Winstone M R. Influence of prestress on the yield surface of the cast nickel superalloy MARM002 at elevated temperature[C]// Carlsson J, Ohlson N G. Proceedings of the 4th International Conference, Mechanical behavior of materials - 1. England, Swen Pergamon Press Oxford, 1984: 199―205.
[48]  刘大斌, 韩文坝, 蔡冰清, 韩晓东. 强度理论和实验现象[J]. 中国工程科学, 2007, 9(12): 44―51.
[49]  Liu Dabin, Han Wenba, Cai Bingqing, Han Xiaodong. Intensity theory and test verification [J]. China Engineering Science, 2007, 9(12): 44―51. (in Chinese)
[50]  Hjelm H E. Yield surface for grey cast iron under biaxial stress [J]. Journal of Engineering Materials and Technology, 1994, 116(2): 148―154.
[51]  Frazer R A. On the power input required to maintain forced oscillations of an aeroplane wing in flight [R]. A.R.C Technical Report, 1939, 1819: 1―18.
[52]  Nissim E. Flutter suppression using activecontrols based on the concept of aerodynamic energy [R]. NASA Technical Note. America, Washington: National Aeronautics and Space Administration, 1971: 18―28.
[53]  Jones J G. On the energy characteristics of the aerodynamic matrix and the relationship to possible flutter [J]. The Aeronautical Quarterly, 1983, 18: 212―225.
[54]  Carta F O. Coupled blade-disk-shroud Flutter instabilities in turbojet engine rotors [J]. Journal of Engineering for Power, 1967, 89(3): 419―426.
[55]  Lubcke H, Schmidt S, Rung T, Thiele F. Comparison of LES and RANS in bluff-body flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1471―1485.
[56]  Vairo G. A numerical model for wind loads simulation on long-span bridges [J]. Simulation Modelling Practice and Theory, 2003, 11(5/6): 315―351.
[57]  Fujisawa N, Takeda G, Ike N. Phase-averaged characteristics of flow around a circular cylinder under acoustic excitation control [J]. Journal of Fluids and Structures, 2004, 19(2): 159―170.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133