全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

诱发H形桥梁断面风振的空气能量输入特征

DOI: 10.6052/j.issn.1000-4750.2012.03.0175

Keywords: H形断面,分块分析,能量特性,气动力,旋涡演化规律

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用计算流体动力学(CFD)的方法,分析了H形断面颤振临界状态下的绕流特征。采用分块分析方法研究颤振过程中气流能量在模型表面不同区域的输入特性以及模型表面的旋涡演化过程对模型表面气动力和气动能量输入特性的影响。分析结果表明模型表面的旋涡演化造成了靠近迎风侧挡板的模型区域的表面压力变化具有较强的规律性,而背风侧挡板附近的模型区域的表面压力变化则没有明显的规律。分块分析的结果显示模型靠近迎风侧挡板的上表面区域是吸收气流能量的部位,而气流输入到模型背风侧挡板附近区域的能量具有波动特性,使得空气输入到模型的总气动能量在一个完整的振动周期内也具有较强的波动特征,从而造成H形断面颤振发生时出现持时较长的大幅扭转振动。

References

[1]  Scanlan R H. The action of flexible bridges under wind, I: Flutter theory [J]. Journal of Sound and Vibration, 1978, 60(2): 187―199.
[2]  Larsen A. Aerodynamics of the Tacoma narrows bridgc- 60 years later [J]. Journal of Structure and Engineering International, 2000, 10(4): 243―248.
[3]  董国朝, 陈政清, 罗建辉, 李寿英. 安装亮化灯具导致的斜拉桥拉索风致驰振流固耦合分析[J]. 中国公路学报, 2012, 25(1): 67―75.
[4]  Dong Guochao, Chen Zhengqing, Luo Jianhui, Li Shouying. Fluid-structure interaction analysis of wing- induced galloping of cables with lamps of cable-stayed bridge [J]. China Journal of Highway and Transport, 2012, 25(1): 67―75. (in Chinese)
[5]  Lubcke H, Schmidt S, Rung T, Thiele F. Comparison of LES and RANS in bluff-body flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1471―1485.
[6]  Vairo G. A numerical model for wind loads simulation on long-span bridges [J]. Simulation Modelling Practice and Theory, 2003, 11(5/6): 315―351.
[7]  Fujisawa N, Takeda G, Ike N. Phase-averaged characteristics of flow around a circular cylinder under acoustic excitation control [J]. Journal of Fluids and Structures, 2004, 19(2): 159―170.
[8]  刘高, 王秀伟, 强士中, 周述华. 大跨度悬索桥颤振分析的能量方法[J]. 中国公路学报, 2000, 13(3): 20―24.
[9]  Liu Gao, Wang Xiuwei, Qiang Shizhong, Zhou Shuhua. Flutter analysis of long-span suspension bridges by energy method [J]. China Journal of Highway and Transport, 2000, 13(3): 20―24. (in Chinese)
[10]  Frazer R A. On the power input required to maintain forced oscillations of an aeroplane wing in flight [R]. A.R.C Technical Report, 1939, 1819: 1―18.
[11]  Nissim E. Flutter suppression using activecontrols based on the concept of aerodynamic energy [R]. NASA Technical Note. America, Washington: National Aeronautics and Space Administration, 1971: 18―28.
[12]  Jones J G. On the energy characteristics of the aerodynamic matrix and the relationship to possible flutter [J]. The Aeronautical Quarterly, 1983, 18: 212―225.
[13]  Carta F O. Coupled blade-disk-shroud Flutter instabilities in turbojet engine rotors [J]. Journal of Engineering for Power, 1967, 89(3): 419―426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133