全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

实时耦联动力试验方法理论与实践

DOI: 10.6052/j.issn.1000-4750.2013.05.ST06, PP. 1-14

Keywords: 实时耦联动力试验方法,数值积分算法,时滞稳定性,控制精度,有限元数值子结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时耦联动力试验是将物理试验与数值计算实时耦联的一种结构动力试验方法。这一试验方法兼具了常规振动台试验与拟动力试验的优点,被认为是结构动力试验方法发展的趋势之一,成为当前结构抗震试验研究的热点。该文首先阐述了实时耦联动力试验方法的基本原理以及关键问题,并综述了实时耦联动力试验研究的发展现状;然后介绍了清华大学水工振动研究组在实时耦联试验方面的研究实践;最后提出了实时耦联动力试验亟待突破的研究问题。

References

[1]  Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79―92.
[2]  Williams MS. Real-time hybrid testing in structural dynamics [C]. 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, 2007.
[3]  Shing P B. Real-time hybrid testing techniques [C]. Modern Testing Techniques for Structural Systems: Dynamics and Control. Eds. Bursi OS, Wagg D, Springer Vienna, 2008, 502: 259―292.
[4]  汪强, 王进廷, 金峰, 张楚汉. 实时耦联动力试验方法评述[C]. 第17届全国结构工程大会论文集(第III册). 北京: 工程力学杂志社, 2008: 178―186.
[5]  Wang Qiang, Wang Jinting, Jin Feng, Zhang Chuhan. A review of real-time dynamic hybrid testing [C]. Proceedings of the Seventeenth National Conference on Structural Engineering (Vol. III). Beijing: Engineering Mechanics Press, 2008: 178―186. (in Chinese)
[6]  桂耀, 迟福东, 王进廷, 金峰. 实时耦联动力试验的研究进展[J]. 水力发电学报, 2012, 31(6): 198―207.
[7]  Gui Yao, Chi Fudong, Wang Jinting, Jin Feng. Advancements in real-time dynamic hybrid testing method [J]. Journal of Hydroelectric Engineering, 2012, 31(6): 198―207. (in Chinese)
[8]  Nakashima M, Masaoka N. Real-time on-line test for MDOF systems [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(4): 393―420.
[9]  Horiuchi T, Inoue M, Konno T, Namita Y. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(10): 1121―1141.
[10]  Darby A P, Blakeborough A, Williams MS. Real-time substructure tests using hydraulic actuator [J]. Journal of Engineering Mechanics, 1999, 125(10): 1133―1139.
[11]  Neild S A, Stoten D P, Drury D, Wagg D J. Control issues relating to real-time substructuring experiments using a shaking table [J]. Earthquake Engineering & Structural Dynamics, 2005, 34(9): 1171―1192.
[12]  Igarashi A, Iemura H, Suwa T. Development of substructured shaking table test method [C]. 12th World Conference on Earthquake Engineering, Paper No. 1775, Auckland, New Zealand, 2000.
[13]  Reinhorn A M, Sivaselvan M V, Liang Z, Shao X. Real-time dynamic hybrid testing of structural systems [C]. Proceedings of the 13th World Conference on Earthquake Engineering, Paper No.1644, Vancouver, Canada, 2004.
[14]  Wallace M I, Sieber J, Neild S A, Wagg D J, Krauskopf B. Stability analysis of real-time dynamic substructuring using delay differential equation models [J]. Earthquake Engineering & Structural Dynamics, 2005, 34(15): 1817―1832.
[15]  Bayer V, Dorka U E, Fullekrug U, Gschwilm J. On real- time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results [J]. Aerospace Science and Technology, 2005, 9(3): 223―232.
[16]  Lee S K, Park E C, Min K W, Lee S H, Chung L, Park J H. Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures [J]. Journal of Sound and Vibration, 2007, 302(3): 596―612.
[17]  王进廷, 汪强, 迟福东, 金峰. 振动台实时耦联动力试验系统构建解决方案[J].地震工程与工程振动, 2010, 30(2): 66―73.
[18]  Wang Jinting, Wang Qiang, Chi Fudong, Jin Feng. Solutions to system construction of real-time dynamic hybrid testing based on shaking-table [J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 66―73. (in Chinese)
[19]  汪强. 基于振动台的实时耦联动力试验系统构建及应用[D]. 北京: 清华大学, 2010.
[20]  Wang Qiang. Construction and application of real-time dynamic hybrid testing system based on shaking tables [D]. Beijing: Tsinghua University, 2010. (in Chinese)
[21]  迟福东. 实时耦联动力试验的稳定性与应用[D]. 北京: 清华大学, 2011.
[22]  Chi Fudong. Stability and application of real-time dynamic hybrid testing [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[23]  Newmark N M. A method of computation for structural dynamics [J]. Journal of Engineering Mechanics, 1959, 85(3): 67―94.
[24]  Chang S Y, Yang Y S, Hsu C W. A family of explicit algorithms for general pseudodynamic testing [J]. Earthquake Engineering and Engineering Vibration, 2011, 10(1): 51―64.
[25]  Chen C, Ricles J M. Development of direct integration algorithms for structural dynamics using discrete control theory [J]. Journal of Engineering Mechanics, 2008, 134(8): 676―683.
[26]  Chen C, Ricles J M. Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics [J]. Journal of Engineering Mechanics, 2010, 136(4): 485―495.
[27]  Bonnet P A, Williams M S, Blakeborough A. Evaluation of numerical time-integration schemes for real-time hybrid testing [J]. Earthquake Engineering & Structural Dynamics, 2008, 37(13): 1467―1490.
[28]  Wu B, Bao H, Ou J, Tian S. Stability and accuracy analysis of the central difference method for real-time substructure testing [J]. Earthquake Engineering & Structural Dynamics, 2005, 34(7): 705―718.
[29]  Wu B, Xu G, Wang Q, Williams M S. Operator-splitting method for real-time substructure testing [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(3): 293―314.
[30]  Mosqueda G, Ahmadizadeh M. Combined implicit or explicit integration steps for hybrid simulation [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(15): 2325―2343.
[31]  Jung R Y, Benson Shing P, Stauffer E, Thoen B. Performance of a real-time pseudodynamic test system considering nonlinear structural response [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(12): 1785―1809.
[32]  Horiuchi T, Nakagawa M, Sugano M, Konno T. Development of a real-time hybrid experimental system with actuator delay compensation [C]. 11th World Conference on Earthquake Engineering, Paper No.660, Acapulco, Mexico, 1996.
[33]  Horiuchi T, Konno T. A new method for compensating actuator delay in real-time hybrid experiments [J]. Philosophical Transactions of the Royal Society A, 2001, 359(1786): 1893―1909.
[34]  Wallace M I, Wagg D J, Neild S A. An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring [J]. Proceedings of the Royal Society A, 2005, 461(2064): 3807―3826.
[35]  Bonnet P A, Williams M S, Blakeborough A. Compensation of actuator dynamics in real-time hybrid tests [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007, 221(12): 251―264.
[36]  Darby A P, Williams M S, Blakeborough A. Stability and delay compensation for real-time substructure testing [J]. Journal of Engineering Mechanics, 2002, 128(12): 1276―1284.
[37]  Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of actuator delay and dynamics for real-time hybrid structural simulation [J]. Earthquake Engineering & Structural Dynamics, 2008, 37(1): 21―42.
[38]  王贞, 吴斌. 基于最小二乘法的时滞实时在线估计方法[J]. 振动工程学报, 2009, 22(6): 625―631.
[39]  Wang Zhen, Wu Bin. A real-time approach to delay estimation based on the Least-Square algorithm [J]. Journal of Vibration Engineering, 2009, 22(6): 625―631. (in Chinese)
[40]  Chen P C, Tsai C K. Dual compensation strategy for real-time hybrid testing [J]. Earthquake Engineering & Structural Dynamics, 2013; 42(1): 1―23.
[41]  迟福东, 王进廷, 金峰. 实时耦联动力试验的时滞稳定性分析[J]. 工程力学, 2010, 27(9): 12―16, 54.
[42]  Chi Fudong, Wang Jinting, Jin Feng. Delay-dependent stability analysis of real-time dynamic hybrid testing [J]. Engineering Mechanics, 2010, 27(9): 12―16, 54. (in Chinese)
[43]  Chi Fudong, Wang Jinting, Jin Feng. Delay-dependent added damping and stability of SDOF real-time dynamic hybrid testing [J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3): 425―438.
[44]  Chi Fudong, Wang Jinting, Wang Qiang, Jin Feng. Delay-dependent stability analysis of MDOF real-time Dynamic hybrid testing considering compensation [J]. Engineering Mechanics, 2011, 28(4): 200―207. (in Chinese)
[45]  迟福东, 王进廷, 金峰, 徐艳杰. 土-结构动力相互作用的实时耦联动力试验的时滞稳定性[J]. 工程力学, 2012, 29(8): 1―7.
[46]  Chi Fudong, Wang Jinting, Jin Feng, Xu Yanjie. Delay-dependent stability of real-time dynamic hybrid Testing for soil-structure interaction analysis [J]. Engineering Mechanics, 2012, 29(8): 1―7. (in Chinese)
[47]  王倩颖, 吴斌, 欧进萍. 考虑作动器时滞及其补偿的实时子结构实验稳定性分析[J]. 工程力学, 2007, 24(2): 9―14.
[48]  Wang Qianying, Wu Bin, Ou Jinping. Stability analysis of real-time substructure testing considering actuator delay and compensation [J]. Engineering Mechanics, 2007, 24(2): 9―14. (in Chinese)
[49]  Wallace M I, Wagg D J, Neild S A. Muti-actuator substructure testing with application to earthquake engineering: how do we assess accuracy [C]. 13th World Conference on Earthquake Engineering, Paper No.3241, Vancouver BC, Canada, 2004.
[50]  Wagg D J, Stoten D P. Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(6): 865―877.
[51]  Bonnet P A, Lim C N, Williams M S, Blakeborough A, Neild S A, Stoten D P, Taylor CA. Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(1): 119―141.
[52]  Wang T, Nakashima M, Pan P. On-line hybrid test combining with general-purpose finite element software [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1471―1488.
[53]  Chen C, Ricles J M. Large scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 549―569.
[54]  Saouma V, Kang D H, Haussmann G. A computational finite-element program for hybrid simulation [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 375―389.
[55]  周孟夏, 王进廷, 金峰. 考虑行波效应的实时耦联动力试验[J]. 水力发电学报, 2012, 31(5): 191―197.
[56]  Zhou Mengxia, Wang Jinting, Jin Feng. Real-time dynamic hybrid testing for traveling wave effect analysis [J]. Journal of Hydroelectric Engineering, 2012, 31(5): 191―197. (in Chinese)
[57]  Shing P B, Wei Z, Jung R Y, Stauffer E. NEES fast hybrid test system at the University of Colorado [C]. 13th World Conference on Earthquake Engineering, Paper No.3497, Vancouver BC, Canada, 2004.
[58]  Chen C, Ricles JM, Hodgson IC, Richard S. Real-time multi-directional hybrid simulation of building piping systems [C]. 14th World Conference on Earthquake Engineering, Paper No.S16-01-007, Beijing, China, 2008.
[59]  Christenson R, Lin Y Z, Emmons A, Bass B. Large-scale experimental verification of semiactive control through real-time hybrid simulation [J]. Journal of Structural Engineering, 2008, 134(4): 522―534.
[60]  Karavasilis T L, Ricles J M, Sause R, Chen C. Experimental evaluation of the seismic performance of steel MRFs with compressed elastomer dampers using large-scale real-time hybrid simulation [J]. Engineering Structures, 2011, 33(6): 1859―1869.
[61]  Wang Jinting, Zhou Mengxia, Jin Feng. Real-time dynamic hybrid testing including finite element numerical substructure [C]. 15th World Conference on Earthquake Engineering, Paper No.0179, Lisbon, Portugal, 2012.
[62]  Wang Qiang, Wang Jinting, Jin Feng, Chi Fudong, Zhang Chuhan. Real-time dynamic hybrid testing for soil-structure interaction analysis [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12): 1690―1702.
[63]  迟福东, 王进廷, 金峰, 汪强. 土-结构-流体动力相互作用的实时耦联动力试验[J]. 岩土力学, 2010, 31(12): 3765―3770.
[64]  Chi Fudong, Wang Jinting, Jin Feng, Wang Qiang. Real-time dynamic hybrid testing for soil-structure-fluid interaction analysis [J]. Rock and Soil Mechanics, 2010, 31(12): 3765―3770. (in Chinese)
[65]  Mercan O, Ricles J M. Stability analysis for real-time pseudodynamic and hybrid pseudodynamic testing with multiple sources of delay [J]. Earthquake Engineering & Structural Dynamics, 2008, 37(10): 1269―1293.
[66]  迟福东, 王进廷, 汪强, 金峰. 考虑补偿的多自由度实时耦联动力试验时滞稳定性分析[J]. 工程力学, 2011, 28(4): 200―207.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133